GROWTH, DEVELOPMENT, AND PHOTOSYNTHETIC PERFORMANCE OF TWO SOYBEAN LINEAGES IN RESPONSE TO DROUGHT

Autores

DOI:

10.31413/nativa.v10i4.13824

Palavras-chave:

chlorophylls, gas exchange, Glycine max (L.) Merr, water relations.

Resumo

Drought stress is a common environmental factor that constrains plants from expressing their ecophysiological potential, disrupting various physiological and biochemical processes. Hence, the objective of this work was to evaluate the growth, development and photosynthetic performance under drought in the vegetative phenological stage of soybean in two lineages with potential difference tolerance to this abiotic stress, lineages (‘Vx-08-10819’ and ‘Vx-08-11614’. For this purpose, biometric traits of development, relative water content in leaves, photosynthetic pigments, gas exchange, and chlorophyll a fluorescence were evaluated. The experimental design was a randomized block design with 4 replications and arranged in a 2 × 3 factorial scheme, comprising of two soybean lineages (Vx-08-10819 and Vx-08-11614) in combination with three water availability [100% (control), 60%, and 40% of field capacity]. Relative water content in leaves, total leaf area, and shoot dry weight of lineage Vx-08-10819 were not changed after exposure to drought. Besides that, photosynthetic capacity of lineage Vx-08-10819 was less affected than lineage Vx-08-11614 to drought, showing that this lineage is tolerant to this abiotic stress in at vegetative stage V4.

Keywords: chlorophylls; gas exchange; Glycine max (L.) Merr; water relations.

 

Crescimento, desenvolvimento e desempenho fotossintético de duas linhagens de soja em resposta à seca

 

RESUMO: O estresse hídrico é um fator ambiental comum que impede as plantas de expressarem seu potencial ecofisiológico, interrompendo vários processos fisiológicos e bioquímicos. Portanto, o objetivo deste trabalho foi avaliar o crescimento, o desenvolvimento e o desempenho fotossintético sob seca na fase fenológica vegetativa da soja em duas linhagens com potencial diferença na tolerância a este estresse abiótico, as linhagens Vx-08-10819 e Vx-08-11614. Para tanto, foram avaliadas características biométricas de desenvolvimento, teor relativo de água nas folhas, pigmentos fotossintéticos, trocas gasosas e fluorescência da clorofila a. O delineamento experimental foi em blocos casualizados com 4 repetições e dispostos em esquema fatorial 2 × 3, composto por duas linhagens de soja (Vx-08-10819 e Vx-08-11614) em combinação com três disponibilidades hídricas [100% (controle), 60% e 40% da capacidade de campo]. O conteúdo relativo de água nas folhas, a área foliar total e o peso seco da parte aérea da linhagem Vx-08-10819 não foram alterados após a exposição à seca. Além disso, a capacidade fotossintética da linhagem Vx-08-10819 foi menos afetada do que a linhagem Vx-08-11614 à seca, mostrando que esta linhagem é tolerante à este estresse abiótico no estágio vegetativo V4.

Palavras-chave: clorofilas; troca gasosa; Glycine max (L.) Merr; relações hídricas.

Biografia do Autor

Vanessa do Rosário Rosa, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brasil.

Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil

Referências

BEZERRA, A. R. G.; SEDIYAMA, T.; BORÉM, A.; SOARES, M. M. Importância Econômica. In: SEDIYAMA, T.; SILVA, F.; BORÉM, A. (eds) Soja: do plantio à colheita. Viçosa: UFV, 2015. p. 20-85.

CATUCHI, T. A.; VÍTOLO, H. F.; BERTOLLI, S. C.; SOUZA, G. M. Tolerance to water deficiency between two soybean cultivars: transgenic versus conventional. Ciência Rural, v. 41, n. 3, p. 373-378, 2011. https://doi.org/10.1590/S0103-84782011000300002

FEHR, W. R.; CAVINESS, C. E.; BURMOOD, D. T.; PENNINGTON, J. S. Stage of development descriptions for soybeans, Glycine Max (L.) Merrill1. Crop science, v. 11, n. 6, p. 929-931, 1971. https://doi.org/10.2135/cropsci1971.0011183X001100060051x

FRANCHINI, J. C.; JUNIOR, A. A. B.; DEBIASI, H.; NEPOMUCENO, A. L. Root growth of soybean cultivars under different water availability conditions. Semina: Ciências Agrárias, v. 38, n. 2, p. 715-724, 2017. https://doi.org/10.5433/1679-0359.2017v38n2p715

GULÍAS, J.; SEDDAIU, G.; CIFRE, J.; SALIS, M.; LEDDA, L. Leaf and plant water use efficiency in cocksfoot and tall fescue accessions under differing soil water availability. Crop Science, v. 52, n. 5, p. 2321-2331, 2012. https://doi.org/10.2135/cropsci2011.10.0579

HAGHIGHI, M.; SAADAT, S.; ABBEY, L. Effect of exogenous amino acids application on growth and nutritional value of cabbage under drought stress. Scientia Horticulturae, v. 272, n. 14, p. 109561, 2020. https://doi.org/10.1016/j.scienta.2020.109561

HLAVÁČOVÁ, M.; KLEM, K.; RAPANTOVÁ, B.; NOVOTNÁ, K.; URBAN, O.; HLAVINKA, P.; SMUTNÁ, P.; HORÁKOVÁ, V.; ŠKARPA, P.; POHANKOVÁ, E.; WIMMEROVÁ, M.; ORSÁG, M.; JUREČKA, F.; TRNKA, M. Interactive effects of high temperature and drought stress during stem elongation, anthesis and early grain filling on the yield formation and photosynthesis of winter wheat. Field crops research, v. 221, n. 9, p. 182-195, 2018. https://doi.org/10.1016/j.fcr.2018.02.022

IQBAL, N.; HUSSAIN, S.; RAZA, M. A.; YANG, C. Q.; SAFDAR, M. E.; BRESTIC, M.; Aziz, A.; HAYYAT, M. S.; ASGHAR, M. A.; WANG, X. C.; ZHANG, J.; YANG, W.; LIU, J. Drought tolerance of soybean (Glycine max L. Merr.) by improved photosynthetic characteristics and an efficient antioxidant enzyme activities under a split-root system. Frontiers in physiology, v. 10, n. 1, p. 786, 2019. https://doi.org/10.3389/fphys.2019.00786

JALEEL, C. A.; MANIVANNAN, P.; WAHID, A.; FAROOQ, F.; AL-JUBURI, H. J.; SOMASUNDARAM, R.; PANNEERSELVAM, R. Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture & Biology, v. 11, n. 1, p. 100-105, 2009.

KIM, J.; YU, J. K.; RODROGUES, R.; KIM, Y.; PARK, J.; JUNG, J. H.; KANG, S. T.; KIM, K. H.; BAEK, J.; LEE, E.; CHUNG, Y. S. Case study: cost-effective image analysis method to study drought stress of soybean in early vegetative stage. Journal of Crop Science and Biotechnology, v. 25, n. 1, p. 33-37, 2021. https://doi.org/10.1007/s12892-021-00110-8

KRON, A. P.; SOUZA, G. M.; RIBEIRO, R. V. Water deficiency at different developmental stages of Glycine max can improve drought tolerance. Bragantia, v. 67, n. 1, p. 43-49, 2008.

LAPAZ, A. M.; CAMARGOS, L. S.; YOSHIDA, C. H. P.; FIRMINO, A. C.; FIGUEIREDO, P. A. M.; AGUILAR, J. V.; NICOLAI, A. B.; PAIVA, W. S.; CRUZ, V. H.; TOMAZ, R. S. Response of soybean to soil waterlogging associated with iron excess in the reproductive stage. Physiology and Molecular Biology of Plants, v. 26, n. 8, p. 1635-1648, 2020. https://doi.org/10.1007/s12298-020-00845-8

MANAVALAN, L. P.; GUTTIKONDA, S. K.; PHAN TRAN, L. S.; NGUYEN, H. T. Physiological and molecular approaches to improve drought resistance in soybean. Plant and cell physiology, v. 50, n. 7, p. 1260-1276, 2009. https://doi.org/10.1093/pcp/pcp082

MESQUITA, R. O.; COUTINHO, F. S.; VITAL, C. E.; NEPOMUCENO, A. L.; WILLIAMS, T. C. R.; OLIVEIRA RAMOS, H. J.; LOUREIRO, M. E. Physiological approach to decipher the drought tolerance of a soybean genotype from Brazilian savana. Plant Physiology and Biochemistry, v. 151, n. 6, p. 132-143, 2020. https://doi.org/10.1016/j.plaphy.2020.03.004

OHASHI, Y.; NAKAYAMA, N.; SANEOKA, H.; FUJITA, K. 2006. Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biologia Plantarum, v. 50, n. 1, p. 138-141, 2006. https://doi.org/10.1007/s10535-005-0089-3

R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019. Available in: https://www.R-project.org/

ROSA, V. D. R.; SILVA, A. A. D.; BRITO, D. S.; PEREIRA JÚNIOR, J. D.; SILVA, C. O.; DAL-BIANCO, M.; OLIVEIRA, J. A.; RIBEIRO, C. Drought stress during the reproductive stage of two soybean lineages. Pesquisa Agropecuária Brasileira, v. 55, n. 1, p e01736, 2020. https://doi.org/10.1590/S1678-3921.pab2020.v55.01736

SINGH, S. K.; REDDY, K. R. Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought. Journal of Photochemistry and Photobiology B: Biology, v. 105, n. 1, p. 40-50, 2011. https://doi.org/10.1016/j.jphotobiol.2011.07.001

TALBI, S.; ROJAS, J. A.; SAHRAWY, M.; RODRÍGUEZ-SERRANO, M.; CÁRDENAS, K. E.; DEBOUBA, M.; SANDALIO, L. M. Effect of drought on growth, photosynthesis and total antioxidant capacity of the saharan plant Oudeneya africana. Environmental and Experimental Botany, v. 176, n. 8, p. 104099, 2020. https://doi.org/10.1016/j.envexpbot.2020.104099

TANKARI, M.; WANG, C.; MA, H.; LI, X.; LI, L.; SOOTHAR, R. K.; CUI, N.; ZAMAN-ALLAH, M.; HAO, W.; LIU, F.; WANG, Y. Drought priming improved water status, photosynthesis and water productivity of cowpea during post-anthesis drought stress. Agricultural Water Management, v. 245, n. 3, p. 106565, 2021. https://doi.org/10.1016/j.agwat.2020.106565

TURNER, N. C. Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, v. 58, n. 1-3, p. 339-366, 1981. https://doi.org/10.1007/BF02180062

ULLAH, A.; MANGHWAR, H.; SHABAN, M.; KHAN, A. H.; AKBAR, A.; ALI, U.; ALI, E.; FAHAD, S. Phytohormones enhanced drought tolerance in plants: a coping strategy. Environmental Science and Pollution Research, v. 25, n. 33, p. 33103-33118, 2018. https://doi.org/10.1007/s11356-018-3364-5

VOLLMANN, J.; FRITZ, C.; WAGENTRISTL, H.; RUCKENBAUER, P. Environmental and genetic variation of soybean seed protein content under Central European growing conditions. Journal of the Science of Food and Agriculture, v. 80, n. 9, p. 1300-1306, 2000. https://doi.org/10.1002/1097-0010(200007)80:9<1300::AID-JSFA640>3.0.CO;2-I

WELLBURN, A. R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, v. 144, n. 3, p. 307-313, 1994. https://doi.org/10.1016/S0176-1617(11)81192-2

WIDURI, L. I.; LAKITAN, B.; SAKAGAMI, J.; YABUTA, S.; KARTIKA, K.; SIAGA, E. Short-term drought exposure decelerated growth and photosynthetic activities in chili pepper (Capsicum annuum L.). Annals of Agricultural Sciences, v. 65, n. 2, p. 149-158, 2020. https://doi.org/10.1016/j.aoas.2020.09.002

YAMORI, W. Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress. Journal of Plant Research, v. 129, n. 3, p. 379-395, 2016. https://doi.org/10.1007/s10265-016-0816-1

YOSHIDA, C. H. P.; PACHECO, A. C.; LAPAZ, A. M.; GORNI, P. H.; VÍTOLO, H. F.; BERTOLI, S. C. Methyl jasmonate modulation reduces photosynthesis and induces synthesis of phenolic compounds in sweet potatoes subjected to drought. Bragantia, v. 79, n. 3, p. 319-334, 2020. https://doi.org/10.1590/1678-4499.20200203

Publicado

2022-12-14 — Atualizado em 2024-06-11

Versões

Como Citar

do Rosário Rosa, V. ., Lapaz, A. de M., Alves da Silva , A. ., Domingos Pereira Júnior, J. ., Dal Bianco, M., & Ribeiro, C. (2024). GROWTH, DEVELOPMENT, AND PHOTOSYNTHETIC PERFORMANCE OF TWO SOYBEAN LINEAGES IN RESPONSE TO DROUGHT. Nativa, 10(4), 547–553. https://doi.org/10.31413/nativa.v10i4.13824 (Original work published 14º de dezembro de 2022)

Edição

Seção

Agronomia / Agronomy