SÍNTESE DE HIDROCARVÃO A PARTIR DA CASCA DO FRUTO DE BOCAIUVA E SUA APLICAÇÃO NA REMOÇÃO DE DIURON DE ÁGUA CONTAMINADA

Autores

  • Tairine Fernanda da Silva Magalhães mtairine@hotmail.com
    Programa de Pós-Graduação em Recursos Hídricos, Universidade Federal de Mato Grosso, Cuiabá, MT, Brasil. https://orcid.org/0000-0002-4306-8430
  • Aline Gonçalves Barbosa barbosaaline041@gmail.com
    Programa de Pós-Graduação em Recursos Hídricos, Universidade Federal de Mato Grosso, Cuiabá, MT, Brasil. http://orcid.org/0000-0001-8446-9700
  • Rossean Golin golin.rossean@gmail.com
    Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Mato Grosso, Cuiabá, MT, Brasil. http://orcid.org/0000-0001-9065-1023
  • Ailton José Terezo ailton.terezo@ufmt.br
    Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, MT, Brasil. http://orcid.org/0000-0003-1189-8445
  • Leonardo Gomes de Vasconcelos vasconceloslg@gmail.com
    Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, MT, Brasil. http://orcid.org/0000-0002-2886-1887
  • Eduardo Beraldo de Morais beraldo_morais@yahoo.com.br
    Programa de Pós-Graduação em Recursos Hídricos, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Mato Grosso http://orcid.org/0000-0002-8505-4133

DOI:

10.31413/nativa.v10i4.13783

Palavras-chave:

adsorção, cinética, modelos de isotermas, estudo termodinâmico

Resumo

Neste estudo, hidrocarvão foi sintetizado a partir da casca do fruto da bocaiuva e aplicado na remoção de diuron de água contaminada por meio do processo de adsorção. A influência do pH inicial da solução, concentração do hidrocarvão, tempo de contato e temperatura no processo de adsorção foram avaliados. O modelo cinético de pseudossegunda ordem e o modelo de isoterma de Langmuir forneceram os melhores ajustes aos dados de adsorção. A capacidade máxima de adsorção foi estimada em 10,06 mg g-1, em pH 4,0 e 30 °C. A energia de ativação calculada pelo modelo de isoterma de Dubinin-Radushkevich foi de 7,805 kJ mol-1, indicando que um processo físico é responsável pela adsorção do diuron no hidrocarvão. Os parâmetros termodinâmicos (ΔH < 0 e ΔG > 0) sugeriram que o processo de adsorção é exotérmico e não espontâneo. Os resultados indicaram que o hidrocarvão derivado da casca do fruto da bocaiuva pode ser um adsorvente alternativo para a remoção de diuron de água.

Palavras-chave: adsorção; cinética; modelos de isotermas; estudo termodinâmico.

 

Hydrochar synthesis using bocaiuva fruit peel and its application in diuron removal from contaminated water

 

ABSTRACT: In this study, hydrochar was synthesized using bocaiuva fruit peel for application in diuron removal from contaminated water through adsorption. The influence of the initial pH of the solution, hydrochar concentration, contact time, and temperature on the adsorption process were evaluated. The pseudo-second order kinetic model and the Langmuir isotherm model provided the best fits to the adsorption data. The maximum adsorption capacity was estimated at 10.06 mg g-1, at pH 4.0 and 30 °C. The activation energy calculated by the Dubinin-Radushkevich isotherm model was 7.805 kJ mol-1, indicating that a physical process is responsible for the adsorption of diuron on hydrochar. The thermodynamic parameters (ΔH < 0 and ΔG > 0) suggested that the adsorption process is exothermic and not spontaneous. The results indicated that hydrochar could be an alternative adsorbent for removing diuron from water.

Keywords: adsorption; kinetic; isotherms models; thermodynamic studies.

Referências

ANDRADE, M. B.; GUERRA, A. C.S.; SANTOS, T. R. T.; CUSIOLI, L. F.; ANTÔNIO, R. S.; BERGAMASCO, R. Simplified synthesis of new GO-α-γ-Fe2O3-Sh adsorbent material composed of graphene oxide decorated with iron oxide nanoparticles applied for removing diuron from aqueous medium. Journal of Environmental Chemical Engineering, v. 8, n. 4, p. 1-7, 2020. https://doi.org/10.1016/j.jece.2020.103903

BELLO, O. S.; ALAO, O. C.; ALAGBADA, T. C.; OLATUNDE, A. M. Biosorption of ibuprofen using functionalized bean husks. Sustainable Chemistry and Pharmacy, v. 13, n. 1, p. 1-10, 2019. https://doi.org/10.1016/j.scp.2019.100151

BELTRÁN-FLORES, E.; TORÁN, J.; CAMINAL, G.; BLÁNQUEZ, P.; SARRÀ, M. The removal of diuron from agricultural wastewaters by Trametes versicolor immobilized on pinewood in simple channel reactors. Science of the Total Environment, v. 728, p. 1-9, 2020. https://doi.org/10.1016/j.scitotenv.2020.138414

BEZERRA, C. O.; CUSIOLI, L. F.; QUESADA, H. B.; NISHI, L.; MANTOVANI, D.; VIEIRA, M. F.; BERGAMASCO, R. Assessment of the use of Moringa oleifera seed husks for removal of pesticide diuron from contaminated water. Environmental Technology, v. 41, n. 2, p. 191-201, 2020. https://doi.org/10.1080/09593330.2018.1493148

BOURAS, O.; BOLLINGER, J. C.; BAUDU, M.; KHALAF, H. Adsorption of diuron and its degradation products from aqueous solution by surfactant-modified pillared clays. Applied Clay Science, v. 37, p. 240-250, 2007. https://doi.org/10.1016/j.clay.2007.01.009

CASTRO, K. C.; COSSOLIN, A. S.; REIS, H. C. O.; MORAIS, E. B. Biosorption of anionic textile dyes from aqueous solution by yeast slurry from brewery. Brazilian Archives of Biology and Technology, v. 60, n. 12, p. 1-13, 2017. http://dx.doi.org/10.1590/1678-4324-2017160101

CEDERLUND, H.; BÖRJESSON, E.; LUNDBERG, D.; STENSTRÖM, J. Adsorption of pesticides with different chemical properties to a wood biochar treated with heat and iron. Water, Air & Soil Pollution, v. 203, p. 1-12, 2016. https://doi.org/10.1007/s11270-016-894-z

DAHRI, M. K.; KOOH, M. R. R.; LIM, L. B. L. Water remediation using low cost adsorbent walnut shell for removal of malachite green: Equilibrium, kinetics, thermodynamic and regeneration studies. Journal of Environmental Chemical Engineering, v. 2, n. 3, p. 1434-1444, 2014. https://doi.org/10.1016/j.jece.2014.07.008

DENIZ, F.; KEPEKCI, R. A. Bioremoval of Malachite green from water sample by forestry waste mixture as potential biosorbent. Microchemical Journal, v. 132, p. 172-178, 2017. http://dx.doi.org/10.1016/j.microc.2017.01.015

DEOKAR, S.; SINGH, D.; MODAK, S.; MANDAVGANE, S. A.; KULKARNI, B. D. Adsorptive removal of diuron on biomass ashes: a comparative study using rice husk ash and bagasse fly ash as adsorbents. Desalination and Water Treatment, v. 57, n. 47, p. 1-14, 2016. https://doi.org/10.1080/19443994.2015.1132394

DUBININ, M. M.; RADUSHKEVICH, L. V. Equation of the characteristic curve of activated charcoal. Proceedings of the USSR Academy Sciences, v. 55, p. 331-333, 1947.

FERREIRA, L. M.; MELO, R. R. Use of Activated charcoal as bio-adsorbent for treament of residual waters: a review. Nativa, v. 9, n. 2, p. 215-221, 2021. https://doi.org/10.31413/nativa.v9i2.11387

FREUNDLICH, H. Über die adsorption in Lösungen. Zeitschrift für Physikalische Chemie, v. 57U, n. 1, 2017.

GEORGIN, J.; FRANCO, D. S. P.; NETTO, M. S.; GAMA, B. M. V.; FERNANDES, D. P.; SEPÚLVEDA, P.; SILVA, L. F. O.; MEILI, L. Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis. Colloids and Surfaces A: Physicochemical and Engineering Aspects. v. 654, n. 5, p. 1-11, 2022. https://doi.org/10.1016/j.colsurfa.2022.129900

GIACOMAZZI, S.; COCHET, N. Environmental impact of diuron transformation: A review. Chemosphere, v. 56, n. 11, p. 1021-1032, 2004. https://doi.org/10.1016/j.chemosphere.2004.04.061

HO, Y. .; MCKAY, G. Pseudo-second order model for sorption processes. Process Biochemistry, v. 34, n. 5, p. 451-465, 1999. https://doi.org/10.1016/S0032-9592(98)00112-5

IHA, O. K.; ALVES, F. C . S .C.; SUAREZ, P. A. Z.; OLIVEIRA, M. B. F.; MENEGHETTI, S. M. P.; SANTOS, B. P. T.; SOLETTI, J. I. Physicochemical properties of Syagrus coronata and Acrocomia aculeata oils for biofuel production. Industrial Crops and Products, v. 62, p. 318-322, 2014. http://dx.doi.org/10.1016/j.indcrop.2014.09.003

KHEDR, T.; HAMMAD, A. A.; ELMARSAFYA, A. M.; HALAWAA, E.; SOLIMAN, M. Degradation of some organophosphorus pesticides in aqueous solution by gamma irradiation. Journal of Hazardous Materials, v. 373, n. 8, 2018, p. 23-28, 2019. https://doi.org/10.1016/j.jhazmat.2019.03.011

KHOSHBOUY, R.; TAKAHASHI, F.; YOSHIKAWA, K. Preparation of high surface area sludge-based activated hydrochar via hydrothermal carbonization and application in the removal of basic dye. Environmental Research, v. 175, n. 3, p. 457-467, 2019. https://doi.org/10.1016/j.envres.2019.04.002

LAGERGREN, S. Y. Zur theorie der sogenannten adsorption gelöster stoffe, kungliga svenska vetenskapsakademiens. Handlingar, v. 24, p. 1-39, 1898

LANGMUIR, I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, v. 40, n. 9, p. 1361-1403, 1918.

LÓPEZ-RAMÓN, M. V.; RIVERA-UTRILLA, J.; SÁNCHEZ-POLO, M.; POLO, A. M. S.; MOTA, A. J.; ORELLANA-GARCÍA, F.; ÁLVAREZ, M. A. Photocatalytic oxidation of diuron using nickel organic xerogel under simulated solar irradiation. Science of the Total Environment, v. 650, p. 1207-1215, 2019. https://doi.org/10.1016/j.scitotenv.2018.09.113

NGUYEN, L. D.; GASSARA, S.; BUI, M. Q.; ZAVISKA, F.; SISTAT, P.; DERATANI, A. Desalination and removal of pesticides from surface water in Mekong Delta by coupling electrodialysis and nanofiltration. Environmental Science and Pollution Research, v. 26, n. 32, p. 32687-32697, 2019. https://doi.org/10.1007/s11356-018-3918-6

PLUANGKLANG, C.; RANGSRIWATANANON, K. Facile method by bentonite treated with heat and acid to enhance pesticide adsorption. Applied Sciences, v. 11, n. 11, p. 1-22, 2021. https://doi.org/10.3390/app11115147

RAHMANI, A.; SEID-MOHAMMADI, A.; LEILI, M.; SHABANLOO, A.; ANSARI, A.; ALIZADEH, S.; NEMATOLLAHI, D. Electrocatalytic degradation of diuron herbicide using three-dimensional carbon felt/β-PbO2 anode as a highly porous electrode: Influencing factors and degradation mechanisms. Chemosphere, v. 276, p. 1-16, 2021. https://doi.org/10.1016/j.chemosphere.2021.130141

SANKAR, M. S.; SIVASUBRAMANIAN, V. Optimization and evaluation of malathion removal by electrocoagulation process and sludge management. Journal of Environmental Chemical Engineering, v. 9, n. 5, p. 1-14, 2021. https://doi.org/10.1016/j.jece.2021.106147

ROSSI, A.; RIGUETO, C. V. T.; DETTMER, A.; COLLA, L. M.; PICCIN, J. S. Synthesis, characterization, and application of Saccharomyces cerevisiae/alginate composites beads for adsorption of heavy metals. Journal of Environmental Chemical Engineering, v. 8, n. 4, p. 1-7, 2020. https://doi.org/10.1016/j.jece.2020.104009

SANJINEZ-ARGANDOÑA, E. J.; CHUBA, C. A. M. Biometrical, physical and chemical characterization of bocaiuva (Acrocomia aculeata (Jacq.) lodd. Revista Brasileira de Fruticultura, v. 33, n. 3, p. 1023-1028, 2011.

TAKESHITA, V.; MENDES, K. F.; PIMPINATO, R. F.; TORNISIELO, V. L. Adsorption isotherms of diuron and hexazinone in drinking water using four agro-industrial residues. Planta Daninha, v. 38, p. 1-9, 2020. https://doi.org/10.1590/S0100-83582020380100013

UNUABONAH, E. I.; ADEBOWALE, K. O.; OLU-OWOLABI, B. I.; YANG, L. Z.; KONG, L. X. Adsorption of Pb (II) and Cd (II) from aqueous solutions onto sodium tetraborate-modified Kaolinite clay: Equilibrium and thermodynamic studies. Hydrometallurgy, v. 93, n. 1-2, p. 1-9, 2008. https://doi.org/10.1016/j.hydromet.2008.02.009

YOSSA, L. M. N.; OUIMINGA, S. K.; SIDIBE, S. S.; OUEDRAOGO, I. W. K. Synthesis of a cleaner potassium hydroxide-activated carbon from baobab seeds hulls and investigation of adsorption mechanisms for diuron Chemical activation as alternative route for preparation of activated carbon from baobab seeds hulls and adsorption o. Scientific African, v. 9, p. 1-10, 2020. https://doi.org/10.1016/j.sciaf.2020.e00476

ZBAIR, M.; AINASSAARI, K.; EL ASSAL, Z.; OJALA, S.; EL OUAHEDY, N.; KEISKI, R. L.; BENSITEL, M.; BRAHMI, R. Steam activation of waste biomass: highly microporous carbon, optimization of bisphenol A, and diuron adsorption by response surface methodology. Environmental Science and Pollution Research, v. 25, n. 35, p. 35657-35671, 2018. https://doi.org/10.1007/s11356-018-3455-3

ZBAIR, M.; EL HADRAMI, A.; BELLARBI, A.; MONKADE, M.; ZRADBA, A.; BRAHMI, R. Herbicide diuron removal from aqueous solution by bottom ash: Kinetics, isotherm, and thermodynamic adsorption studies. Journal of Environmental Chemical Engineering, v. 8, n. 2, p. 103667, 2020a. https://doi.org/10.1016/j.jece.2020.103667

ZBAIR, M.; BOTTLINGER, M.; AINASSAARI, K.; OJALA, S.; STEIN, O.; KEISKI, R. L.; BENSITEL, M.; BRAHMI, R. Hydrothermal carbonization of argan nut shell : Functional mesoporous carbon with excellent performance in the adsorption of bisphenol A and diuron. Waste and Biomass Valorization, v. 11, n. 4, p. 1565-1584, 2020b. https://doi.org/10.1007/s12649-018-00554-0

ZHANG, X.; ZHANG, Y.; NGO, H. H.; GUO, W.; WEN, H.; ZHANG, D.; LI, C.; QI, L. Characterization and sulfonamide antibiotics adsorption capacity of spent coffee grounds based biochar and hydrochar. Science of the Total Environment, v. 716, e137015, 2020. https://doi.org/10.1016/j.scitotenv.2020.137015

Downloads

Publicado

2022-11-02

Como Citar

Magalhães, T. F. da S. ., Barbosa, A. G. ., Golin, R., Terezo, A. J., Vasconcelos, L. G. de ., & Morais, E. B. de. (2022). SÍNTESE DE HIDROCARVÃO A PARTIR DA CASCA DO FRUTO DE BOCAIUVA E SUA APLICAÇÃO NA REMOÇÃO DE DIURON DE ÁGUA CONTAMINADA. Nativa, 10(4), 486–494. https://doi.org/10.31413/nativa.v10i4.13783

Edição

Seção

Ciências Ambientais / Environmental Sciences

Artigos mais lidos pelo mesmo(s) autor(es)