DESEMPENHO DOS MÉTODOS DE ESTIMAÇÃO GENÔMICOS NA IDENTIFICAÇÃO DA RESISTÊNCIA DO ARROZ À BRUSONE
DOI:
10.31413/nativa.v10i4.13448Palavras-chave:
brusone do arroz, modelagem estatística, seleção genômica ampla, análise ROC, acuráciaResumo
Nos últimos anos, a perda de safras de arroz vem aumentando devido a estresses bióticos e abióticos, dentre os quais se destaca a brusone, que pode resultar em perdas de 100% em cultivares de arroz susceptíveis. Portanto, torna-se estratégico identificar metodologias que selecionem cultivares mais resistentes à doença. Neste trabalho, objetivou-se utilizar a análise de curva ROC (Receiver operator characteristic) e medidas tradicionais para a avaliação do desempenho de modelos de estimação genômicos (RR-BLUP, BLASSO e Bayes Cπ) na identificação da resistência do arroz à brusone. Os modelos RR-BLUP e Bayes Cπ foram mais acurados para a predição de resistência à brusone, enquanto o menor tempo de execução foi obtido pelo RR-BLUP. A área abaixo da curva ROC foi equivalente às medidas tradicionais para avaliar a acurácia dos modelos, com a vantagem de permitir a avaliação gráfica. Pela análise gráfica, o BLASSO obteve menor desempenho em altos níveis de especificidade (>0,75). Em menores níveis de especificidade, a sensibilidade dos modelos foi similar. A metodologia ROC mostrou-se uma boa alternativa para avaliação de modelos de predição genômica, podendo ser utilizada para a seleção de cultivares de arroz resistentes à brusone.
Palavras-chave: brusone do arroz; modelagem estatística; seleção genômica ampla; análise ROC; acurácia.
Performance of genomic estimation methods in the identification of rice resistance to brusone
ABSTRACT: In recent years, rice crop losses have increased due to biotic and abiotic stresses, among which brusone, which can result in 100% losses in susceptible rice cultivars. Therefore, it becomes strategic to identify methodologies that select resistant cultivars. In this work, we aimed to use ROC (Receiver operator characteristic) curve analysis and traditional measures to evaluate the performance of genomic estimation models (RR-BLUP, BLASSO and Bayes Cπ) in identifying rice resistance to brusone. The RR-BLUP and Bayes Cπ models were most accurate for the prediction of brusone resistance, while the best runtime was obtained by RR-BLUP. The area under the ROC curve was equivalent to traditional measures to evaluate the accuracy of the models, with the advantage of allowing graphical evaluation. By graphical analysis, BLASSO performed worst at high levels of specificity (>0.75). At lower levels of specificity, the sensitivity of the models was similar. The ROC methodology proved to be a good alternative for the evaluation of genomic prediction models, and can be used for the selection of rice cultivars resistant to brusone.
Keywords: rice blast; statistical modelling; genomics wide selection; ROC analysis; accuracy.
Referências
AZEVEDO, C. F.; DE RESENDE, M. D. V.; E SILVA, F. F.; VIANA, J. M. S.; VALENTE, M. S. F.; RESENDE JR., M. F. R.; MUÑOZ, P. Ridge, Lasso and Bayesian additive-dominance genomic models. BMC Genetics, v. 16, n. 1, p. 1-13, 2015. https://doi.org/10.1186/s12863-015-0264-2
BHERING, L. L.; JUNQUEIRA, V. S.; PEIXOTO, L. A.; CRUZ, C. D.; LAVIOLA, B. G. Comparison of methods used to identify superior individuals in genomic selection in plant breeding. Genetics and Molecular Research, v. 14, n. 3, p. 10888-10896, 2015. https://doi.org/10.4238/2015.september.9.26
BISCARINI, F.; STEVANATO, P.; BROCCANELLO, C.; STELLA, A.; SACCOMANI, M. Genome-enabled predictions for binomial traits in sugar beet populations. BMC Genetics, v. 15, n. 1, p. 87, 2014. https://doi.org/10.1186/1471-2156-15-87
CRUZ, C. D.; SALGADO, C. S.; BHERING, L. L. Genômica aplicada. Visconde de Rio Branco: Suprema Gráfica Editora, 2013. 424p.
DE LOS CAMPOS, G.; NAYA, H.; GIANOLA, D.; CROSSA, J.; LEGARRA, A.; MANFREDI, E.; WEIGEL, K.; COTES, J. M. Predicting Quantitative Traits With Regression Models for Dense Molecular Markers and Pedigree. Genetics, v. 182, n. 1, p. 375-385, 2009. https://doi.org/10.1534/genetics.109.101501
DIXIT, S.; SINGH, U. M.; SINGH, A. K.; ALAM, S.; VENKATESHWARLU, C.; NACHIMUTHU, V. V.; YADAV, S.; ABBAI, R.; SELVARAJ, R.; DEVI, M. N.; RAMAYYA, P. J.; BADRI, J.; LAKSHMI, T. R. J.; LAKSHMIDEVI, G.; VIDHYA J. L. R. K.; PADMAKUMARI, A. P.; LAHA, G. S.; PRASAD, M. S.; SEETALAM, M.; SINGH, V. K.; KUMAR, A. Marker Assisted Forward Breeding to Combine Multiple Biotic-Abiotic Stress Resistance/Tolerance in Rice. Rice, v. 13, n. 29, p. 1-15, 2020. https://doi.org/10.1186/s12284-020-00391-7
FANG, M.; JIANG, D.; LI, D.; YANG, R.; FU, W.; PU, L.; GAO, H.; WANG, G.; YU, L. Improved LASSO priors for shrinkage quantitative trait loci mapping. Theoretical and Applied Genetics, v. 124, n. 7, p. 1315-1324, 2012. https://doi.org/10.1007/s00122-012-1789-7
GADAL, N.; SHERSTHA, J.; POUDEL, M. N.; POKHAREL, B.; A review on production status and growing environments of rice in Nepal and in the world. Archives of Agriculture and Environmental Science, v. 4, n. 1, p. 83-87, 2019. https://doi.org/10.26832/24566632.2019.0401013
GIANOLA, D. Priors in whole-genome regression: the bayesian alphabet returns. Genetics, v. 194, p. 573-596, 2013. DOI: 10.1534%2Fgenetics.113.151753
HOSMER JR., D. W.; LEMESHOW, S.; STURDIVANT, R. X. Applied Logistic Regression. 3o ed. Hoboken: John Wiley & Sons, Inc., 2013. 510p.
JIANG, H.; FENG, Y.; QIU, L.; GAO, G.; ZHANG, Q.; HE, Y. Identification of Blast Resistance QTLs Based on Two Advanced Backcross Populations in Rice. Rice, v. 13, n. 31, 1-15, 2020. https://doi.org/10.1186/s12284-020-00392-6
LING, C. X.; HUANG, J.; ZHANG, H. AUC: A Better Measure than Accuracy in Comparing Learning Algorithms. In: In: Xiang Y., Chaib-draa B. (Ed.) Advances in Artificial Intelligence. Canadá, 2003. p. 329-341. https://doi.org/10.1007/3-540-44886-1_25
MACKILL, A. O.; BONMAN, J. M. Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology, v. 82, p. 746-749, 1992. https://doi.org/10.1590/S0100-84551996000400012
MARTINS, B. E. M.; CHAIBUB, A. A.; CORTÊS, M. V. C. B.; SILVA LOBO, V. L.; FILIPPI, M. C. C. Characterization of bacterial isolates for sustainable rice blast control. Revista Caatinga, v. 33, n. 3, p. 702-712, 2020. https://doi.org/10.1590/1983-21252020v33n313rc
MEUWISSEN, T. H. E.; HAYES, B. J.; GODDARD, M. E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, v. 157, n. 4, p. 1819-1829, 2001. https://doi.org/10.1093/genetics/157.4.1819
NASCENTE, A. S.; FILIPPI, M. C. C.; SOUSA, T. P.; CHAIBUB, A. A.; SOUZA, A. C. A.; LANNA, A. C. Upland rice gas exchange, nutrient uptake and grain yield as affected by potassium fertilization and inoculation of the diazotrophic bacteria Serratia spp. Australian Journal of Crop Science, v. 13, n. 6, p. 944-953, 2019. https://doi.org/10.21475/ajcs.19.13.06.p1689
NIZOLLI, V. O.; PEGORARO, C.; DE OLIVEIRA, A. C. Rice blast: strategies and challenges for improving genetic resistance. Crop Breeding Applied Biotechnology, v. 21, e387721S9, 2021. http://dx.doi.org/10.1590/1984-70332021v21Sa22
PÉREZ, P.; DE LOS CAMPOS, G. Genome-wide regression and prediction with the BGLR statistical package. Genetics, v. 198, n. 2, p. 483-495, 2014. https://doi.org/10.1534/genetics.114.164442
RAMALINGAM, J.; RAVEENDRA, C.; SAVITHA, P.; VIDYA, V.; CHAITHRA, T. L.; VELPRABAKARAN, S.; SARASWATHI, R.; RAMANATHAN, A.; PILLAI, M. P. A.; ARUMUGACHAMY, S.; VANNIARAJAN, C. Gene Pyramiding for Achieving Enhanced Resistance to Bacterial Blight, Blast, and Sheath Blight Diseases in Rice. Frontiers in Plant Science, v. 11, 2020. https://doi.org/10.3389/fpls.2020.591457
RATHNA, P. T. S.; NELSON, A. R. L. E.; RAVICHANDRAN, K.; ANTONY, R. Nutritional and functional properties of coloured rice varieties of South India: a review. Journal of Ethnic Foods, v. 6, p. 7-11, 2019. https://doi.org/10.1186/s42779-019-0017-3
RESENDE, M. D. V; SILVA, F. F.; AZEVEDO, C. F. Estatística matemática, biométrica e computacional: modelos mistos, multivariados, categóricos e generalizados (REML/BLUP), inferência bayesiana, regressão, aleatória, seleção genômica, QTL, GWAS, estatística espacial e temporal, competição, sobrevivência. 1. ed. [s.l.] : Suprema Gráfica Editora, 2014. 881p.
RUTKOSKI, J. E.; POLAND, J. A.; SINGH, R. P.; et al. Genomic selection for quantitative adult plant stem rust resistance in wheat. The Plant Genome, v. 7, n. 3, p. 1-10, 2014. DOI: 10.3835/plantgenome2014.02.0006
SOUZA, D. C.; RUSSINI, A.; VARGAS, R. R.; BOTTEGA, E. L.; SCHLOSSER, J. F.; FARIAS, M. S. Determinação de área mínima para aquisição de colhedora para a colheita do arroz irrigado na fronteira oeste do Rio Grande do Sul. Tecno-Lógica, v. 24, n. 2, p. 208-214, 2020. http://dx.doi.org/10.17058/tecnolog.v24i2.14904
VERMA, D. K.; SRIVASTAV, P. P. Bioactive compounds of rice (Oryza sativa L.): Review on paradigm and its potential benefit in human health. Trends in Food Science & Technology, v. 97, p. 355-365, 2020. https://doi.org/10.1016/j.tifs.2020.01.007
VITEZICA, Z. G.; VARONA, L.; LEGARRA, A. On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genetics, v. 195, n. 4, p. 1223-1230, 2013. https://doi.org/10.1534/genetics.113.155176
WIRASWATI, S. M.; RUSMANA, I.; NAWANGSIH, A. A.; WAHYUDI, A. T. Antifungal activities of bacteria producing bioactive compounds isolated from rice phyllosphere against Pyricularia oryzae. Journal of Plant Protection Research, v. 59, n. 1, p. 86-94, 2019. https://doi.org/10.24425/jppr.2019.126047
ZHAO, K.; TUNG, C.-W.; EIZENGA, G. C.; et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications, v. 2, n. 1, p. 467, 2011. https://doi.org/10.1038/ncomms1467.
Publicado
Versões
- 2023-11-30 (2)
- 2022-11-02 (1)
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Nativa
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Direitos Autorais para artigos publicados nesta revista são do autor, com direitos de primeira publicação para a revista. Em virtude de a aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais.
A artigos publicados nessa revista, podem ser reproduzidos parcialmente ou utilizados como referência por outros autores, desde que seja cita a fonte, ou seja, a Revista Nativa.
Copyright for articles published in this journal are the authors, with first publication rights granted to the journal. The journal shows open access, and articles are free to use, with proper attribution, in educational and non-commercial.
The articles published in this journal may be reproduced in part or used as a reference by other authors, provided that the source is quoted.