POTENCIAL DE UTILIZAÇÃO DOS ÓLEOS FIXOS DE TUCUMÃS

Autores

DOI:

10.31413/nativa.v10i1.13368

Palavras-chave:

Arecaceae, qualidade, componentes funcionais, cromatografia gasosa.

Resumo

As palmeiras são recursos vegetais de grande importância econômica e social no Brasil. Apesar da diversidade e amplo uso são pouco estudadas, havendo necessidade de mais pesquisas, principalmente, sobre a qualidade e composição de espécies ainda pouco exploradas. O trabalho objetivou caracterizar os óleos fixos extraídos do mesocarpo dos frutos de tucumã-açú e tucumã para identificar usos potenciais. Óleos fixos foram obtidos da Amazon Oil Industry LTDA, Ananindeua/PA, sob extração por prensagem a frio. Os tucumãs apresentaram diferenças em todas as propriedades físico-químicas avaliadas, com exceção do índice de peróxidos. Os óleos apresentaram elevado potencial em termos de constituintes bioativos, com destaque para o teor de clorofila total do óleo de tucumã (50,99 mg/100 g) e polifenóis extraíveis totais do óleo de tucumã (147,02 mg/100 g). Em relação ao perfil de ácidos graxos, o óleo de tucumã-açú apresentou elevado conteúdo de ácidos graxos insaturados, principalmente oleico e linoleico, com mais de 73%. Por ser fonte de compostos bioativos, há perspectivas de uso destes óleos como matérias-primas importantes para utilização em escala industrial e comercial, mas a qualidade destes óleos também implica num fator de relevância para o mercado consumidor, evidenciando necessidade de mais estudos.

Palavras-chave: Arecaceae; qualidade; componentes funcionais; cromatografia gasosa.

 

Potential for use of fixed tucumãs oils

 

ABSTRACT: Palm trees are plant resources of great economic and social importance in Brazil. Despite their diversity and wide use, they are little studied, requiring more research, mainly on the quality and composition of species that are still underexplored. The work aimed to characterize the fixed oils extracted from the mesocarp of tucumã-açú and tucumã fruits to identify potential uses. Fixed oils were obtained from Amazon Oil Industry LTDA, Ananindeua/PA, under cold pressing extraction. Tucumãs showed differences in all physicochemical properties evaluated, with the exception of the peroxide index. The oils showed high potential in terms of bioactive constituents, especially the total chlorophyll content of tucumã oil (50.99 mg/100 g) and total extractable polyphenols from tucumã oil (147.02 mg/100 g). Regarding the fatty acid profile, tucumã-açú oil had a high content of unsaturated fatty acids, mainly oleic and linoleic, with more than 73%. As a source of bioactive compounds, there are prospects for the use of these oils as important raw materials for use on an industrial and commercial scale, but the quality of these oils also implies a factor of relevance for the consumer market, evidencing the need for further studies.

Keywords: Arecaceae; quality; functional components; gas chromatography.

Biografia do Autor

Leirson Rodrigues da Silva, Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil.

Engenheiro Agrônomo, Doutor em Fitotecnia.

Referências

ABDEL KARIM, M.; EZDEHAR, A. E.; SALAH, H. Chemical constituents and antimicrobial activity of Sudanese Hyphaene thebaica L. (Arecaceae) fruit oil. The Pharmaceutical and Chemical Journal, v. 6, n. 1, p. 84-89, 2019.

ALMEIDA, D. T.; VIANA, T. V.; COSTA, M. M.; SILVA, C. S.; FEITOSA, S. Effects of different storage conditions on the oxidative stability of crude and refined palm oil, olein and stearin (Elaeis guineensis). Food Science and Technology, v. 39, n. 1, p. 211-217, 2019. DOI: https://doi.org/10.1590/fst.43317

AOAC. Association of agricultural chemists. Official methods of the association of the agricultural chemists: v. 2. 20rd.Pharmabooks: AOAC International, 3172p, 2016.

AOCS. Official methods and recommeded practices of the American oil chemist's society. 7th, 2nd. AOCS: Champaign, 1200p, 2017.

BRUINSMA, J. The quantitative analysis of clorophylls a and b in plant extracts. Photochemistry and Photobiology, v. 2, n. 2, p. 241-249, 1963. DOI: https://doi.org/10.1111/j.1751-1097.1963.tb08220.x

CODEX ALIMENTARIUS COMMISSION. Standard for edible fats and oils. Not covered by individual standards (Codex Stan 19-1981), 4p.2019

COIMBRA, M. C.; JORGE, N. Fatty acids and bioactive compounds of the pulps and kernels of Brazilian palm species, guariroba (Syagrus oleraces), jerivá (Syagrus romanzoffiana) and macaúba (Acrocomia aculeata). Journal of the Science of Food and Agriculture, v. 92, n. 3, p. 679-684, 2012. DOI: https://doi.org/10.1002/jsfa.4630

DINESH, B.; YADAV, R. B.; REDDY, D. A.; PADMA, S.; SUKUMARAN, M. K. Determination of ascorbic acid content in some Indian spices. International Journal of Current Microbiology and Applied Sciences, v. 4, n. 8, p. 864-868, 2015.

ENGEL, V. L.; POGGIANI, F. Estudo da concentração de clorofila nas folhas e seu espectro de absorção de luz em função do sombreamento em mudas de quatro espécies florestais. Revista Brasileira de Fisiologia Vegetal, v. 3, n. 1, p. 39-45, 1991.

FERREIRA, D. F. Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, v. 38, n. 2, p. 109-112, 2014. DOI: https://doi.org/10.1590/S1413-70542014000200001

FLORA DO BRASIL 2020. Jardim Botânico do Rio de Janeiro. Disponível em: https://floradobrasil.jbrj.gov.br/. Acesso em: 03 jan. 2022. 2022.

FRANCIS, F. J. Analysis of anthocyanins. In: MARKAKIS, P (ed). Anthocyanins as food colors. New York: Academic Press, p. 181-207, 1982.

HARIYADI, P. Understanding the codex standard to ensure safety and quality of palm oil. International Journal of Oil Palm, v. 4, n. 1, p. 1-7, 2021. DOI: https://doi.org/10.35876/ijop.v4i1.58

HIGBY, W. K. A simplifield method for determination of some the carotenoid distribution in natural and carotene fortifield orange juice. Journal of Food Science, v. 27, n. 1, p. 42-49, 1962. DOI: https://doi.org/10.1111/j.1365-2621.1962.tb00055.x

JAPIR, A. A. W.; SALIMON, J.; DERAWI, D.; BAHADI, M.; AL-SHUJAʼA, S.; YUSOP, M. R. Physicochemical characteristics of high free fatty acid crude palm oil. OCL, v. 24, n. 5, p. 1-9, 2017. DOI: https://doi.org/10.1051/ocl/2017033

MAAIL, C. M. H. C.; ARIFFIN, H.; HASSAN, M. A.; SHAH, U. K. M.; SHIRAI, Y. Oil palm frond juice as future fermentation substrate: A feasibility study. BioMed Research International, v. 2014, e465270, p. 1-8, 2014. DOI: https://doi.org/10.1155/2014/465270

MCGUIRE, R. G. Reporting of objective color measurements. HortScience, v. 27, n. 12, p. 1254-1255, 1992. https://doi.org/10.21273/HORTSCI.27.12.1254

MELÉNDEZ-MARTÍNEZ, A. J.; VICARIO, I. M.; HEREDIA, F. J. Application of tristimulus colorimetry to estimate the carotenoids content in ultrafrozen orange juices. Journal of Agricultural and Food Chemistry, v. 51, n. 25, p. 7266-7270, 2003. DOI: https://doi.org/10.1021/jf034873z

MILLER, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, v. 31, n. 3, p. 426-428, 1959. DOI: https://doi.org/10.1021/ac60147a030

NAHUM, J. S.; SANTOS, L. S.; SANTOS, C. B. Formation of palm oil cultivation in Para’s Amazon. Mercator, v. 19, e19007, p. 1-14, 2020. DOI: https://doi.org/10.4215/rm2020.e19007

NOLASCO, C. L.; SOLER, L. S.; FREITAS, M. W. D.; LAHSEN, M.; OMETTO, J. P. H. B. Scenarios of vegetable demand vs. production in Brazil: The links between nutritional security and small farming. Land, v. 6, n. 3, p. 1-19, 2017. DOI: https://doi.org/10.3390/land6030049

PARDAUIL, J. J. R.; MOLFETTA, F. A.; BRAGA, M.; SOUZA, L. K. C.; FILHO, G. N. R.; ZAMIAN, J. R.; COSTA, C. E. F. Characterization, thermal properties and phase transitions of amazonian vegetable oils. Journal of Thermal Analysis and Calorimetry, v. 127, n. 2, p. 1221-1229, 2017. DOI: https://doi.org/10.1007/s10973- 016-5605-5

POMBO, J. C. P.; BARROSO, M. C.; RIBEIRO, D. C. S.; SOUSA, S. H. B. Qualidade físico-química dos óleos brutos de palma e palmiste. Revista Brasileira de Agrotecnologia, v. 11, n. 2, p. 479-484, 2021. DOI: https://doi.org/10.18378/REBAGRO.V12I2.8743

ROVERE, B. O.; RODRIGUES, J. H.; TELEKEN, J. G. Redução do índice de acidez através da neutralização e esterificação para produção de biodiesel. Brazilian Journal of Development, v. 6, n. 5, p. 24678-24686, 2020. DOI: https://doi.org/10.34117/bjdv6n5-064

RUFINO, M. S. M.; ALVES, R. E.; BRITO, E. S.; PÉREZ-JIMÉNEZ, J.; SAURA-CALIXTO, F.; MANCINI-FILHO, J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, v. 121, n. 4, p. 996-1002, 2010. DOI: https://doi.org/10.1016/j. foodchem.2010.01.037

SANTOS, O. V.; SOARES, S. D.; DIAS, P. C. S.; DUARTE, S. P. A.; SANTOS, M. P. L.; NASCIMENTO, F. C. A. Chromatographic profile and bioactive compounds found in the composition of pupunha oil (Bactris gasipaes Kunth): implications for human health. Revista de Nutrição, v. 33, e190146, p. 1-12, 2020. DOI: https://doi.org/10.1590/1678-9805202033e190146

SILVA, R. S.; MIRANDA, P. H. O.; AMORIM, L. C.; FERNANDES, P. H. E.; AMARAL, E. V. F.; VERAS, B. O.; OLIVEIRA, F. G. S.; CORREIA, M. T. S.; ALMEIDA, J. R. G. S.; SILVA, M. V. Emerging source of bioactive compounds from Arecaceae family: a systematicreview. Research, Society and Development, v. 10, n. 10, e426101018994, 2021. DOI: https://doi.org/10.33448/rsd-v10i10.18994

STATISA. Production of major vegetable oils worldwide from 2019/2020. Statista. Available in: https://www.statista.com/statistics/263933/production-of-vegetable-oils-worldwide-since-2000/. Accessed: 07 Jul. 2020. 2020.

TAHIR, N. I.; ROZALI, N. L.; ZAKARIA, N.; OTHMAN, A.; RAMLI, U. S. Phytochemical insights on palm oils and extra virgin olive oil. Malaysian Journal of Analytical Sciences, v. 25, n. 4, p. 678-694, 2021.

YEMN, E. W.; WILLIS, A. J. The estimation of carbohydrate in plant extracts by anthrone. Biochemical Journal, v. 57, n. 3, p. 508-514, 1954. DOI: https://doi.org/10.1042/bj0570508

Downloads

Publicado

2022-03-24

Como Citar

da Silva, L. R., de Figueiredo, A. R., Monteiro Marques , J., Ascari Morgado, C. M., Tomaz de Oliveira, M. M., Rabelo Braga Farias, T., & de Almeida Freitas, R. (2022). POTENCIAL DE UTILIZAÇÃO DOS ÓLEOS FIXOS DE TUCUMÃS. Nativa, 10(1), 109–116. https://doi.org/10.31413/nativa.v10i1.13368

Edição

Seção

Ciências Ambientais / Environmental Sciences