PETROLOGY AND THE ORIGIN OF THE INTRUSIVE MASSES OF THE EAST OF JIROFT

Authors

  • Farbod F Faraji revistageoaraguaia@outlook.com
  • Afshin Ashja Ardalan afshinashjaardalan@yahoo.com
  • Moosa Kalimi Noghreeian revistageoaraguaia@yahoo.com.br
  • Hamidraza J Jafari hadi_236@yahoo.com

Keywords:

Petrology of Intrusive Population, Urmia-Dokhtar, Jiroft, Iran.

Abstract

The study area with an area of 55 km2 is located south east of Kerman province and in the area of Jiroft city. This area is structurally and geological division in the Urmia-Dokhtar zone. The Urmia- Dokhtar volcanic belt part of the Alpine-Himalayan is a volcanic belt. Several intrusive bodies are in the east of Jiroft, which is part of Jebalbarez Batolite andigneous actives of JabalBarez area have occurred in four stages. The third magma activity of the region occurred in Oligomiocene and occurred during three phases. its lithological composition includes synogranite and Monzogranite, granodiorite, diorite, quartz monzonite. Quartz, Plagioclase and Potassium feldspar are the major minerals in granites. Biotite, Amphibole, espen, opac minerals are other manufactores of these rocks. Various types of granular, myrmekitic, Graphic and perthite textures are observed in them. Regarding field studies, petrographic, and geochemical studies, granite rocks of meta-aluminum and granitoid components of Iseries are volcanic arc of the continental margin of orogenic region that originate from melting of shell-shaped igneous rocks. granitoid specimens are normalized to the original mantle, chondrite, upper and lower crust. The samples show enrichment LREE and less enrichment of HREE. The composition of the samples in terms of these incompatible elements is similar to the medium composition of the crust. Samples in tectonic environment diagrams are located wothing the VAG range. igneous rocks are associated with the subduction zone neotethys. The magma subtraction in the magmatic room in the first stage leads to the formation of quartz- diorite to granodiorite composition, and in the second phase, with the continuation of magmatic subtraction, the magma composition is more acidified than before and the rocks with granodiorite to granite composition composed. In the third stage, with the continuation of the subtraction process, the composition of magma is highly acidic consists of granite and alkali granite stones.

References

AFTABI, A.; ATAPOUR, H. Regional aspects of shoshonitic volcanism in Iran. Episodes. n.23. 2000. p.119-124.

AGHANABATI, S. A.; EFTEKHARNEJAD, J. Geological map of 1:250:000 Bam. Geological Survey of Iran. 1994.

ALMEIDA, J. A. C.; GUIMARÃES, F. V.; DALL’AGNOL, R. Petrologiamagnética do granito anorogênico Bannach, Terreno Granito-Greenstone de Rio Maria, Pará. Rev. Bras. Geociências. n.37. 2007. p.17-36.

AMIDI, S. M. Étudegéologique de la région de Natanz-Surk (Iran, Central). Thèse Ph.D. Univ. Grénoble, France. 1977. 316p.

BACON, C. R.; DRUITT, T. H. Compositional evolution of the zoned calc-alkaline magma chamber of Mt. Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology. n.98. 1988. p.256-224.

BERBERIAN, F.; BERBERIAN, M. Tectono-plutonic episodes in Iran, In: Zagros, Hidu Kush and Himalaya Geodynamic Evolution. Am. Geophys. Union. Geodynamic Series 3. 1981. p.5-32.

BULLEN, T. D.; CLYNNE, M.A. Trace element and isotopic constrains on magmatic evolution at Lassen volcanic center. Journal of Geophysical Research. n.95. 1990. p.19671-19691.

CAILLET, C.; DEHLAVI, P.; MARTEL-JANTIN, B. Géologie de la région de Saveh (Iran) Contribution a l’étude du volcanisme et du plutonismTertiaires de la zone de l’Iran Central. Thèse 3 ème cycle. Univ. Grénoble, France. 1978. 325p.

CLEMENS, J. D.; HOLLOWAY, J. R.; WHITE, A. J. R. Origine of A- type granites: experimental constraints. Am. Mineral. n.71. 1986. p.317-324.

DE LA ROCHE, H. A classification of volcanic and plutonic rocks using R1- R2 diagrams and major element analyses-its relationships and current nomenclature. Chem. Geol. n.29. 1980. p.183-210.

DIMITRIJEVIC, M. D. Geology of Kerman region, Geology Survey of Iran. Report. Report Yu/52. 1973. 334p.

EMAMI, M. H. Géologie de la région de Qom-Aran (Iran): Contribution al’étudedynamique et géochimique du volcanisme Tertiaire del’Iran Central. Ph.D., Thèse, Univ., Grenoble, France, 1981. 489p.

FARIDY, A.; ATTARPOUR, H. Geological map of 1:100.000 of Narmashir. Geological Survey of Iran. 2003.

FURNES, H.; EL- SAYEDE, M.; KHALILI, S.O. Pan- African magmatism in the wadi- El- imra district, central desert, Eggept: geochemistry & tectonic environments. Jon, Geo. Soc. v.153. 1996.

GHORBANI, M. Geochemistry and Petrology of Iran, Arian zaminpublishing. 2006. 488p.

GROVE, T. L.; DONNELLY-NOLAN, J. M. The evolution of young silicic lavas at Medicine Lake Volcano, California: implications for the origin of compositional gaps in calc-alkaline series lavas. Contribution to Mineralogy and Petrology. n.92. 1986. p.281-302.

GUFFANTI, M.; CLYNNE, M. A.; MUFFLER, L. J. P. Thermal and mass implications of magmatic evolution in the Lassen Volcanic region, California, and constrains on basalt influx to the lower crust. Journal of Geophysical Research. n.101. 1996. p.3001-3013.

KARIG, D. E. Origin and development of marginal basins in the western pacific. Journal of Geophysical Research. n.76. 1971. p.2542-2561.

KENT, R. E. Magnesian basalts from the Hebrides, Scotland: chemical composition and relationship to the Iceland plume. Journal of the Geological Society. v.6. 1995. p.979-983.

LESCUYER, J. L.; RIOU, R. Géologie de la région de Mianeh (Azerbaijan): contribution al’étude du volcanisme Tertiaire de l’Iran. Thèse: Univ. Grénoble, France, 1976. 232p.

MIYASHIRO, A. Volcanic rock series in island arcs and active continental margins. America Journal of Science. v.274. 1974. p.321-355.

MIDDLEMOST, E. A. K. 1985. Magma and magmatic rocks: an introduction to igneous petrology. Longman Group U. K. 1985. p.73-86.

MOINE-VAZIRI, H. Volcanismetertiarie et quaternaire en Iran. Thesed’Etat. Univers. Paris-Sud. Orsay. 1985.

NASIRI R. Geochemistry and petrology of Mehrzamin volcanic rocks (north-northeast). Master thesis: Tarbiatmodarres University. 2006. 133p.

NOWROOZI, A. Seismotectonics of the Persian plateau, eastern Turkey, Caucasus and Hindu Kush regions, B. Seismol. Soc. Am. n.61. 1971. p.317-341.

NAGUDI, B.; KOEBERL, C.; KURAT, G. Petrography and geochemistry of the Singo granite, Uganda, interpretations and implications for its origin. J. Afr. Earth Sci. n.36. 2003. p.73-87.

PEARCE, J.A.; HARRIS, N.B.W.; TINDLE, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology. n.25. 1984. p.956-983.

ROBERTS, M. P.; CLEMENS, J. D. Origin of high-potassim, calc-alkaine, I-type granitoid. Geology. n.21. 1993. p.825-828.

RASOULI, J.; GHORBANI, M.; AHADNEJAD, V. Field observations, Petrography and microstructures study of JebaleBarez Plutonic complex (East - North East Jiroft). Journal of Tethys. n.2. v.3. 2014. p.178-195.

PEARCE, J. A.; HARRIS, B. W.; TTINDLE, A. G. Trace element of discriminant diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology. n.25. 1984. p.956-983.

SABZEHEI, M. Geological Quadrangle Map of Iran, n.12, Hajiabad, 1:250.000, First compilation by Berberian, M., final compilation and revision by Sabzehei, M. Geological Survey of Iran. 1994.

SHAND, S. J. Eruptive rocks. Their genesis, composition, classification and their relation to deposits. Thomas Murby and co., London. 1943. 488p.

SAUNDERS, R. S. Magellan mission summary. Journal of Geophysical Research. v. 97. 1992. p. 13067-13090. DOI:10.1029/92JE01397.

SUN S. S.; MC, DONUGH W. F. Chemical and isotopic systematic of oceanic basalts: implicatiol for mantee composition and processes. In: SAUNDERS A.D.; NORRY M. J. (eds). Magmatism in ocean basins. Geo/Soc. Londoh. Sepec.pub.42. 1989. p.313-345.

TAKIN, M. Iranian geology and continental drift in the Middle East. Nature. n.235. 1972. p.147-150.

TAYLOR, S. R.; McLENNAN, S. M. The continental crust: its composition and evolution, an examination of the geochemical record preserved in sedimentary rocks. Oxford: Blackwell Scientific Publications. 1985. 312p.

TEPPER, J. H.; NELSON, B. K.; BERGANTZ, G. W.; IRVING A. J. Petrology of the Chilliwack Batholith, North Casades, Washington: generation of calk-alkaline granitoids by melting of mafic lower crust with variable water fugacity. Contribution to Mineralogy and Petrology. n.113. 1993. p.355-351.

THOMPSON, R, N. British Tertiary volcanic province. Scoot. J. Geol. v.18. 1982. p.49-107.

WEAVER, B.; TARNEY, J. Empirical approach to estimating the composition of the continental crust. Nature. v.310. 1984.

WHALEN, J. B.; CURRIE, K. L.; CHAPPELL, B. W. 1987. A-type Granite: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology. v.95. 1987. p.407-419.

WILSON M. Igneous petrogenesis a global tectonic approach. Department of Earth Science, University of Leeds. 1989. 466p.

WINTER, O. An introduction of igneous and metamorphic petrology. Department of Geology whit man college. 2001. 697p.

YING, J; ZHANG, H; SUN, M; TANG, Y; ZHOU, X; LIU, X. Petrology and geochemistry of Zijinshan alkaline intrusive complex in Shanxi Province, Western North China Craton: implication for magma mixing of different Source in an extensional regime. Lithos. 2007. p.1-22.

ZHAO, J, H.; ZHOU, M. F. (2007), Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): implications for subduction-related metasomatism in the upper mantle. Precambrian Research. n.152. 2007. p.27-47.

Published

2019-08-28

How to Cite

Faraji, F. F., Ardalan, A. A., Noghreeian, M. K., & Jafari, H. J. (2019). PETROLOGY AND THE ORIGIN OF THE INTRUSIVE MASSES OF THE EAST OF JIROFT. Revista Geoaraguaia, 9(2). Retrieved from https://periodicoscientificos.ufmt.br/ojs/index.php/geo/article/view/8971

Issue

Section

Artigos

Most read articles by the same author(s)