Petrography and Mineral Chemistry of Tourmaline in Molla Taleb Ganitoid, Northeast of Aligudarz (Lorestan Province)

Autores

  • Davoud Pirdadeh Beyranvand pbdavoud@gmail.com
    Department of Geology, Faculty of Science, North Tehran Branch, Islamic Azad University, Tehran, Iran https://orcid.org/0000-0001-9879-0028
  • Afshin Ashja Ardalan afshinashjaardalan@yahoo.com
    Assistant Professor, Department of Geology, North Tehran Branch, Islamic Azad University, Tehran, Iran https://orcid.org/0000-0002-1800-9594
  • Taher Farhadinejad farhadinejad@gmail.com
    Soil Conservation and Watershed Management Research Department, Lorestan Agricultural and Natural Resources Research and Education Center, AREEO, Khoramabad, Iran. https://orcid.org/0000-0001-9263-1608
  • Mohammad Ali Arian m-arian@iau-tnb.ac.ir
    Islamic Azad University https://orcid.org/0000-0001-8193-0274

Palavras-chave:

Turmalina, cal-alcalino, granito, análises com microondas, Molla Taleb, Aligudarz, Região Samandaj-Sirjan

Resumo

Molla Taleb pegmatites (northeast of Aligudarz) are located in the western part of the metamorphic-igneous Sanandaj-Sirjan Zone (SSZ). Slates and schists along with siliceous veins and veinlet and black Hornfels, as well as metamorphic sandstones are among the oldest deposits of this area. The most important geological event in this area is the development and intrusion of granitoid masses into schists of the Molla Taleb area during the Middle Jurassic. The rocks of the study area are in the range of gabbro, diorite, granodiorite, and granite. Granites are in the range of type-I granites. Most specimens are calc-alkaline and mainly contain peraluminous. Microprobe electron analysis of tourmalines present in pegmatites, tourmaline- aplite-pegmatite veins, nodular tourmalines, and quartz-tourmaline veins shows that all tourmalines are in the Schorl region and the range of alkaline tourmalines. These tourmalines with FeO / FeO + MgO ratios between 0.6 and 0.8 are in the range of magmatic-hydrothermal tourmalines and more than 0.8 in the magmatic range. Therefore, the studied tourmalines are dependent on granite environments and are formed by a hydrothermal fluid of magmatic origin.

Referências

ABU EL-ENEN M. M., OKRUC M.; The texture and composition of tourmaline in metasediments of the Egypt, Implication for the tectono-metamorphic evolution of the Pan-African basement. Mineralogy Magazine, 71(1), 2007. p.17-40.

AHMADI BANKDAR, S.; AHMADI A. Tourmaline composition in Chah Rouii pegmatites, southwest of Nehbandan. Journal of Crystal and Mineralogy, v. 21, n. 32, 014. p. 549-560.

AHMADI, K. A. Petrology of granitoid rocks in Boroujerd region, Ph.D. thesis in Petrology, Faculty of Science, University of Tehran, 2006, 190 p.

AHMADI, K. A.; TAHMASEBI, N. Z.; ZAL, F.; SHABANI, Z. Behavior of the main and rare elements of tourmaline mineral in Mangavi and Ganjnameh pegmatites (Hamadan region). Petrology, v. 7, n. 27, 2016. p. 1-24.

AHMADI-KHALAJI A.; ESMAEILY D.; VALIZADEH M. V.; RAHIMPOUR-BONAB, H. Petrology and Geochemistry of the Granitoid Complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian earth Sciences, 29. 2007. p. 859-877.

BARATIAN, M.; ARIAN, M. A.; YAZDI, A. Petrology and Petrogenesis of Siah Kooh volcanic rocks in the eastern Alborz. GeoSaberes, 11, 2020. P. 349-363. doi: https://doi.org/10.26895/geosaberes.v11i0.980

BAZOOBANDI, M. H.; ARIAN, M. A.; EMAMI, M. H.; TAJBAKHSH, G.; YAZDI, A. (2016). Petrology and Geochemistry of Dikes in the North of Saveh in Iran. Open Journal of Marine Science, 6, 2016. p. 210-222. doi: 10.4236/ojms.2016.62017

BEA, F.; PEREIRA, M. D.; STROH, A. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chemical Geology, 117: 1994, p. 291-312.

BURIÁNEK, D.; NOVÁK, M. Compositional evolution and substitutions in disseminated and nodular tourmaline from leucocratic granites: Examples from the Bohemian Massif, Czech Republic. Lithos, 95(1), 2007, p. 148-164.

CAVARRETTA, G.; PUXEDDU, M. Schorl-Dravite-Ferridravite Tourmalines Deposited by Hydrothermal Magmatic Fluids during Early Evolution of the Larderclio Geothermal Field, Italy. Economic Geology, 85, 1990. p. 1236-1251.

CHAPPELL, B. W.; WHITE, A. J. R. Two Contrasting Granite Types. Pacific Geology, 8, 2001. p.173-4.

COPJAKOVA, R.; SKODA, R.; GALIOVA, M. V.; NOVAK, M. Distributions of Y + REE and Sc in tourmaline and their implications for the melt evolution; examples from NYF pegmatites of the Trebic Pluton, Moldanubian Zone, Czech Republic. Journal of Geosciences, 58(2), 2013. p. 113–131.

DE LA ROCHE H.; LETERRIER, J.; GRANDCLAUDE, P.; MARCHAL, M. A classification of volcanic and plutonic rocks using R1R2-diagram and major element analyses-Its relationships with current nomenclature. Chemical Geology, 29, 183–210. 1980

DELFANI, H. Mineralogy, Geochemistry and Economic Geology of Feldspar and Tourmaline of Molla Taleb, North of Aligudarz city, Lorestan province. Master Thesis of Islamic Azad University, Khorramabad Branch, 2017. 140 p.

ESNA-ASHARI, A.; HASSANZADEH, J.; VALIZADEH, M. V. Geochemistry of microgranular enclaves in Aligoodarz Jurassic arc pluton, western Iran: implications for enclave generation by rapid crystallization of cogenetic granitoid magma. Mineralogy and Petrology, 101, 2011. p. 195–216.

ESNA-ASHARI, A.; TIEPOLO, M.; VALIZADEH, M. V.; HASSANZADEH, J.; SEPAHI A. S. Geochemistry and zircon U-Pb geochronology of Aligoodarzgranitoid complex, Sanandaj-Sirjan Zone, Iran. Journal of Asian Earth Sciences, 43, 2012. p. 11-12

FOIT, F. F.; ROSENBERG, P. E. Coupled substitutions in the tourmaline group. Contributions to Mineralogy and Petrology, 62, 1977. p. 109-117.

GALBRAITH, C. G.; CLARKE, D. B.; TRUMBULL, R. B.; WIEDENBECK, M. Assessment of tourmaline compositions as an indicator of emerald mineralization at the Tsa da Glisza Prospect, Yukon Territory, Canada. Economic Geology, 104, 2009. p. 713–731.

GHOLAMI, A. A.; MOHAMMADI, S. S.; ZARRINKOOB, M. H. Petrography, mineral chemistry of tourmaline, geochemistry, and tectonic setting of Tertiary igneous rocks in Shurab area (west of Khusf), Southern Khorasan. Journal of Crystal and Mineralogy, 24, (1), 2016; p. 189-204.

HASTIE A. R.; KERR A. C.; PEARCE J. A.; MITCHELL, S. F. Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th–Co Discrimination Diagram. Journal of Petrology, p 2007, p 2341–2347.

HAWTHORNE, F. C.; HENRY, D. J. Classification of the minerals of the tourmaline group. European Journal of Mineralogy, 11, 1999. p. 201-215.

IRVINE, T. N.; BARAGAR, W. R. A. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Science, v. 8, 1971. p. 523-276.

ISMAILI, D.; VALIZADEH, M. V.; KANANIAN, A. Mineral chemistry of tourmaline in quartz-tourmaline veins of SHAH-KUH granite (Eastern Iran). Journal of Science, University of Tehran, v. 30,n. 2, 2004. p. 157-177.

KHALILI, K. H.; MACKIZADEH, M. A. The occurrence of tourmaline in Kuh Zar (Baghoo) Au-Cu mine, south of Semnan province. Petrology, 3(9), 2012. p. 57-70.

KRYNINE, P. D. The tourmaline group in sediments. Journal of Geology, 54, 1946. p. 65-87.

LONDON, D.; MANING, D. A. C. Chemical variation and significance of tourmaline from SW England. Economic Geology, 90, 1995. p. 495-519.

LOTFI, M.; SHAHROKHI, S. V. Investigating the factors controlling copper and gold mineralization in Kondor, Aligudarz region, and its relationship with geodynamic problems of Mastarun granitoid massif (northeast of Lorestan province), 7th conference of Iranian Geological Society; University of Isfahan, September 4-6, 2003.

MANING, D. A. C. Chemical and morphological variation in tourmalines from the Hub Kapong batholith of peninsular Tailand. Mineralogical Magazine, 45, 1982. p. 139-147.

MANSOURI ISFAHANI, M.; KHALILI, M. Mineralogy and Mineral chemistry of Tourmaline and Garnet in Granitoids of Molla Taleb Village (North of Aligudarz) Northwest of Isfahan. Journal of Crystal and Mineralogy, v. 22, n. 1, 2014. p. 139-148.

MASOUDI, F. Contact metamorphism and pegmatite development in the region SW of Arak, Iran. Ph.D. Thesis, Leeds University, UK, 1997. 135pp.

MASOUDI, F.; YARDLEY, B. W. D.; CLIFF, R. A. Rb-Sr geochronology of pegmatites, plutonic rocks and a hornfels in the region southwest of Arak, Iran. Islamic Republic of Iran. Journal of Sciences, 13(3), 2002. p. 249-254.

MICHAEL, A. W.; HORST, R. M.; PHILIPP, S.; ANNA, G.; THOMAS, W.; DORRIT, E. J.; MATTHIAS, B.; GREGOR, M. Trace element systematics of tourmaline in pegmatitic and hydrothermal systems from the Variscan Schwarzwald (Germany): The importance of major element composition, sector zoning, and fluid or melt composition. Chemical Geology, 344, 2013. p. 73-90.

MIDDLEMOST, E. A. K. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37, 1994. p. 215-244.

MIRLOUHI, A. S.; KHALILI, M. Petrography and geochemistry of tourmaline nodules from Aderba leucogranite (northeast of Golpaygan, Sanandaj-Sirjan area). Journal of Petrology, v. 7, n. 27, 2016. p. 191-205.

MIRSEPAHVAND, F.; TAHMASEBI, Z.; SHAHROKHI, S. V.; AHMADI KHALAJI, A. Geochemistry and determination of the origin of tourmalines in Boroujerd region. Journal of Crystal and Mineralogy, v. 20, n. 2, 2011. p. 281-292.

MIYASHIRO, A. Volcanic rock series in island arcs and active continental margins. American Journal of Science, v. 274, 1974. p. 321-355.

MORADI, A.; SHABANIAN, N.; DAVOUDIAN DEHKORDI, A. R. Geochemistry of mylonitic tourmaline-bearing granite- gneiss pluton in the northeast of June mine, JOURNAL OF ECONOMIC GEOLOGY SPRING-SUMMER, 2017 , Volume 9 , Number 1 (16) ; Page(s) 13 To 14. v. 9, n. 1, 2017. p. 141-158.

NEWBERRY, R. J.; BUNN, L. E.; SWANSON, S. E.; SMITH, T. E. Comparative petrological evolution of the Sn and W granites of the Fairbanks–Circle area, interior Alaska. In: HANNAH J. L.; STEIN H. J.(Eds). Ore-Bearing Granite Systems; Petrogenesis and Mineralizing Processes. Geological Society of America, 246, 1990. p. 121–142.

PEARCE, J. A.; HARRIS, N. B. W.; TINDLE, A. J. Trace elements discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 1984. p. 956-983.

PESQUERA, A.; TORRES-RUIZ, J.; GIL-GRESPO, P. P.; VELILLA, N. Chemistry and genetic implications of tourmaline and Li-F-Cs micas from the Valdeflores area (Caceres, Spain). American Mineralogist, 84, 1999. p. 55-69.

PIRAJNO, F.; SMITHIES, R. H. The FeO/(FeO+ MgO) ratio of tourmaline: a useful indicator of spatial variations in granite- related hydrothermal mineral deposits. Journal of Geochemical Explorations, n. 42, 1992. p. 371-381.

Pirdadeh Beyranvand, D., 2020. Mineralogy, Geochemistry and Economic Geology of Feldspar and Tourmaline Mulataleb North of Aligudarz County, Lorestan Province, PhD Thesis, Islamic Azad University, North Tehran Branch, 300 p.

POORBEHZADI, K,; YAZDI, A,; SHARIFI TESHNIZI, E,; DABIRI R. Investigating of Geotechnical Pa-rameters of Alluvial Foundation in Zaram-Rud Dam Site, North Iran. International Journal of Min-ing Engineering and Technology, 1(1), 2019. p. 33-44.

SCAILLET, B.; PICHAVANT, M.; ROUX, J. Experimental crystallization of leucogranite magmas. Journal of Petrology, 36(3), 1995. p. 663–705.

SEPAHIGERO, A. A.; SALAMI, S.; TABRIZI, M. Geochemistry of tourmalines in pegmatite and aplite dykes of Alvand plutonic complex and metamorphic rocks of the Hamadan region. Journal of Crystal and Mineralogy. v. 23, n. 3, 2014. p. 495-506.

SHAHROKH, S. V. Genetic of Kondor copper and gold mineralization in Aligudarz area, Lorestan,Iran. 6th European congress on regional geoscientific cartography and information system, Bologna, Italy, 2009.

SHAND, S. J. A/NK-A/CNK diagram, to determine the degree of saturation of alumina in igneous rocks of the study area., London The Eruptive Rocks (3rd.) Thomas Murby, John Wiley, New York, p. 444. 1943.

SLACK, J. F.; TRUMBULL, R. B. Tourmaline as a recorder of ore-forming processes. Elements, n. 7, 2011,1993. p. 321-326.

SOHEILI, M.; JAFARIAN, M.; ABDOLLAHI, M. Geological map 1:100000 Aligudarz area with a brief description. Geological Survey and Mineral Exploration of Iran, 1992.

SUN, S.; MCDONOUGH, W. F. Chemical and isotopic systematic of oceanic basalts: implication for Mantel composition and processes. In: SAUNDERS A. D.; NORRY, M. J. (eds) Magmatism in ocea basins, Geological Society: London - Special Publications 42 ,1989. p. 313-345.

TAHMASEBI, Z.; AHMADI KHALAJI, A.; RAJAIEH, M. Tourmalinization in the Astaneh granitoid massif (south of Arak). Journal of Crystal and Mineralogy, v. 17, n. 3, 2009. p. 368-380.

TAYLOR, S. R.; MCLENNAN, S. M. The continental crust: its composition and evolution. Geoscience texts, Blackwell Publishing: Oxford, 1985.

THOMPSON, R. N. Magmatism of the British, Tertiary volcanic province. Scottish Journal of Geology, v. 18: 1982. p. 50-107.

TORRES-RUIZ, J.; PESQUERA, A.; GIL CRESPO, P. P.; VELILLA, N. Origin and petrologenetic implications of tourmaline-rich rocks in the Sierra Nevada (Betic Cordillera, southeastern Spain). Chemical Geology, 197, 2003. p. 55-86.

TRUMBULL, R. B.; CHAUSSIDON, M. Chemical and boron isotopic composition of magmatic and hydrothermal tourmalines from the Sinceni granite- pegmatite system in Swaziland. Chemical Geology,153, 1999. p. 125-137.

VAEZIPOUR, M. H.; KHALQI, M. H. Geological map 1:100000 Varcheh with a brief description. Geological Survey of Iran, 2004.

VAN HINSBERG, V. J. Preliminary experimental data on trace-element partitioning between tourmaline and silicate melts. The Canadian Mineralogist, 49, 2011. p. 153–163.

WEAVER, B. L.; TARNEY, J. Empirical approach to estimating the composition of the continental crust. Nature 310, 575–577 (1983)

WEISBROD, A.; POLAK, C.; ROY, D. Experimental study of tourmaline solubility in the system Na-Mg-Al-Si-B-O-H. Applications to the boron content of natural hydrothermal fluids and tourmalinization process. Volume of Abstracts, International Symposium Experimental Mineralogy and Geochemistry, Nancy, 1986.

WILSON, M.; Igneous petrogenesis, a global tectonic approach. Unwin Hyman: London, 1989.

WOLF, M. B.; LONDON, D. Boron in granitic magmas: Stability of tourmaline in equilibrium with biotite and cordierite. Contributions to Mineralogy and Petrology, 130(1), 1997. p. 12–30.

YAZDI, A.; ASHJA-ARDALAN, A.; EMAMI, M. H.; DABIRI, R.; FOUDAZI, M. Chemistry of Minerals and Geothermobarometry of Volcanic Rocks in the Region Located in Southeast of Bam, Kerman Prov-ince. Open Journal of Geology, 7, 2017. P. 1644-1653. doi: 10.4236/ojg.2017.711110

YAZDI, A.; SHAHHOSINI, E.; DABIRI, R.; ABEDZADEH, H. Magmatic Differentiation Evidences And Source Characteristics Using Mineral Chemistry In The Torud Intrusion (Northern Iran). Revista GeoAraguaia, 9(2), 2019. p. 6-21.

ZAL, F. Geochemistry and determination of the origin of tourmaline in granites (g2) of Mashhad, Master Thesis, Faculty of Science, Lorestan University, 2014. 110 pages.

Downloads

Publicado

2021-06-25

Como Citar

Pirdadeh Beyranvand , D. ., Ashja Ardalan, A., Farhadinejad , T., & Ali Arian, M. (2021). Petrography and Mineral Chemistry of Tourmaline in Molla Taleb Ganitoid, Northeast of Aligudarz (Lorestan Province). Revista Geoaraguaia, 11(1), 55–76. Recuperado de https://periodicoscientificos.ufmt.br/ojs/index.php/geo/article/view/11392

Edição

Seção

Artigos