MAGMATIC DIFFERENTIATION EVIDENCES AND SOURCE CHARACTERISTICS USING MINERAL CHEMISTRY IN THE TORUD INTRUSION (NORTHERN IRAN)

Autores

  • Abdollah Yazdi yazdi_mt@yahoo.com
  • Elham Shahhosini yazdi_mt@yahoo.com
  • Rahim Dabiri yazdi_mt@yahoo.com
  • Hamid Abedzadeh yazdi_mt@yahoo.com

Palavras-chave:

Plutonic Rocks, Mineral Chemistry, Torud, Iran.

Resumo

The granitoid bodies is located 120 km north-east of Shahrood town. The area is structurally located in the north of the central Iranian zone. These activities occurred during the Upper Eocene stage. This article describes a compositional study on biotites, plagioclase of monzonites of the granite rocks of Torud area and elucidates the geotectonic and geothermobarometry conditions. The main minerals of granitoids are quartz, plagioclase, and K-feldspar. Other constituents of these rocks are biotite, amphibole, sphene, and opaque minerals. Various textures such as granular, myrmekite and graphics are observed in these rocks. Based on the geochemistry studies Plagioclase monzonite, Quartzmonzonite rocks of range anorthoclase and granite rocks are in the range of albite. Biotite compositions in the granitoid bodied depend mostly on temperature of crystallisation and oxygen fugacity (ƒO2) and compositions of magmas from which they have been crystallised. The calculated Ti in biotite temperatures for the Troud granitoids are in the range of 530-900 °C. The biotite compositions used to discriminate tectonic settings of granitoids. The biotite compositions were used to discriminate the tectonic setting of the plutons. biotites granitoid rocks are the type of magmatic, rich in iron- magnesium, anorogenic alkaline and areas tensional. Based on the Major and trace element granitoid rocks different trends is show by Rb with Si and Ba with Si indicate occurrence of fractional crystallization processes (AFC). Based on the petrography, geochemistry and desert studies of the calc-alkaline, metaluminous, and series I granitoids, it can be inferred that the volcanic arcs of the continental margin are the orogenic areas that have originated from the partial melting of crust igneous rocks. The intrusions appeared to be related to calc-alkaline orogenic suites. granitoid rocks are associated with the subduction zone neotethys.

Referências

ABDEL-RAHMAN, A. Nature of Biotites from Alkaline, Calc-alkaline, and Peraluminous Magmas. Journal of Petrology. n. 35. v. 2. 1994. p. 525- 541.

ALBUQUERQUEC, C. A. R. Geochemistry of biotites from granitic rocks, Northern Portugal. Bull. Geol. Sot. Amer. n. 37. 1973. p. 1779-1802.

ALTHERR, R.; SIEBEL, W. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology. n.143. 2002. p. 397- 415.

AGARD, P.; OMRANI, J.; JOLIVET, L.; MOUTHEREAU, F. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences. n. 94. 2005. p. 401-419.

BRAY. A. W.; BENNING. L. G.; BONNEVILLE. S.; OELKERS. E. H. Biotite surface chemistry as a function of aqueous fluid composition. Journal of Geochimica et Cosmochimica Acta. n. 128. 2014. p.58-70.

BARRIERE, M.; COTTON, J. Biotites and associated minerals as markers of magmatic fractionation and deuteric equilibration in granites. Contrib Mineral Petrol. n. 70. 1979. p.183-192.

BUDDINGTON, A. F.; LINDSLEY, D. H. Iron-titanium oxide minerals and synthetic equivalents. Journal of Petrology. n. 5. 1964. p. 310-357.

DEBON, F.; LE FORT, P. A chemical-mineralogical classification of common plutonic rocks and associations. Trans. R. Soc Edinb Earth Sci. n. 73. 1983. p.135-149.

DEER, W. A.; HOWIE, R. A.; ZUSSMAN, J. Rock-forming minerals. v. 3. Sheet silicates longman. London. 1962.

DEER, W. A.; HOWIE, R. A.; ZUSSMAN, J. An introduction to rock forming minerals. 1991. 528p.

DEERING, C. D.; HORTON, T. W.; GRAVLEY, D.M.; COLE, J. W. Hornblende, cummingtonite, and biotite hydrogen isotopes: direct evidence of slab-derived fluid flux in silicic magmas of the Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research. n. 233-234. 2012. p. 27–36.

DODGE, F. C. W.; SMITH, V. C.; MAYS, R. E. Biotites from granitic rocks of the Central Sierra Nevada Batholith, California. Journal of Petrology. n.10. 1969. p. 250-271.

FLOYD, P. A.; WINCHESTER, J. A. Magma type and tectonic setting discrimination using immobile elements. Earth Planet Sci Let. n. 27. 1975. p. 211-218.

FOSTER, M. D. Interpretation of the composition of trioctahedral micas. US Geological Survey Prof. v. 354B. 1960. p.1-49.

GILE, H. A.; BONI, M.; BALSSONE, G.; ALLEN, C. R.; BANKS, D.; MOORE, F. Marble-hosted sulfide ores in the Angouran Zn-(Pb-Ag) deposit, NW Iran: interaction of sedimentary brines with a metamorphic core complex. Mineralium Deposita. n. 41. 2006. p.1-16.

GHASEMI, A.; TALBOT, C. J. A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences. n. 26. 2006. p. 683-693.

GARDIEN, V.; THOMPSON, A. B.; GRUJIC, D.; ULMER, P. Experimental meltingof biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting. Journal of Geophys Res. n.100. 1995. p.1581-1559.

GORBATSCHEV, R. Distribution of elements between cordierite, biotite, and garnet. Miner Abh. n. 110. 1968. p.57-80.

HELZ, R. T. Phase relations of basalts in their melting ranges at PH2O=5 kb. Part II. Melt compositions. Journal of Petrology. n. 17. 1976. p.139-193.

HENRY, D. J.; GUIDOTTI, C. V.; THOMSON, J. A. The Ti-saturation surface for low-tomedium pressure metapelitic biotite: implications for Geothermometry and Tisubstitution mechanisms. Am. Mineral. n. 90. 2005. p.316-328.

HOUSHMANDZADEH, A. S.; ALAVI, M.; HAGHIPOUR, M. Geological evolution of the phenomenon TORUD (from the Precambrian to the present Covenant). Geological Survey. 1978. 138p.

JUNG, S.; HOERNES, S.; MEZGER, K. Synorogenic melting of mafic lower crust: constraints from geochronology, petrology and Sr, Nd, Pb and O isotope geochemistry of quartz diorites (Damara orogen, Namibia). Contributions to Mineralogy and Petrology. n.143. 2002. p.551-566.

KOPRUBAS¸ N.; ALDANMAZ, E. Geochemical constraints on the petrogenesis of Cenozoic I-type granitoids in Northwestern Anatolia, Turkey: evidence for magma generation by lithospheric delamination in a post-collisional setting. Int Geol Rev. n. 46. 2004. p.705-729.

NACHIT, H.; IBHI, A.; ABIA, E. H.; BEN OHOUD, M. Discrimination between Primary magmatic biotites, reequilibrated biotites and neoformed biotites. C. R. Geoscience. n.337. 2005. p.1415-1420.

NEIVA, A. M. R. Geochemistry of hybrid granitoid rocks and of their biotites from Central Northern Portugal and their petrogenesis. Lithos. n.14. 1981. p.149-163.

PATIN˜ O DOUCE, A. E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology. n.25. 1997. p.743-746.

PATIN˜ O DOUCE, A. E.; BEARD, J. S. Dehydration-meltingof biotite gneiss and quartz amphibolite from 3 to 15 kbar. Journal of Petrology. n.36. 1995. p.707-738.

PATIN˜ O DOUCE, A. E.; BEARD, J. S. Effects of P, F(O2) and Mg/Fe ratio on dehydration meltingof model metagreywackes. Journal of Petrology. n.37. 1996. p.999-1024.

PATIN˜ O DOUCE, A. E.; MCCARTHY, T. C. Meltingof crustal rocks duringcontinental collision and subduction. In: HACKER, B. R.; LIOU J. G. (eds). When Continents Collide: geodynamics and geochemistry of ultrahigh-pressure rocks. Kluwer: Dordrecht. 1998. p.27–55.

PEARCE, J. A.; CANN, J. R. Tectonic setting of basic volcanic rocks investigated using trace element analyses. Earth Planet Sci Lett. n.19, 1973. p. 290-300.

PEARCE, J. A.; HARRIS, N. B. W.; TINDLE, A. G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology. n.25. 1984. p. 956-983.

RAPP, R. O. Amphibole-out phase boundary in partially melted metabasalt, its control over liquid fraction and composition, and source permeability. Journal of Geophysical Research. n.100. 1995. p.15601-15610.

RAPP, R. P.; WATSON, E. B. Dehydration meltingof metabasalt at 8–32 kbar: implications for continental growth and crustmantle recycling. Journal of Petrology. n.36. 1995. p.891–931.

Downloads

Publicado

2019-08-25

Como Citar

Yazdi, A., Shahhosini, E., Dabiri, R., & Abedzadeh, H. (2019). MAGMATIC DIFFERENTIATION EVIDENCES AND SOURCE CHARACTERISTICS USING MINERAL CHEMISTRY IN THE TORUD INTRUSION (NORTHERN IRAN). Revista Geoaraguaia, 9(2). Recuperado de https://periodicoscientificos.ufmt.br/ojs/index.php/geo/article/view/8958

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)