Lithological Mapping and Identification of Argillic and Propylitic Alteration Zones at Anjerd Volcanic Terrain


  • Majid Bagheri Assistant Professor, Department of Geology, North Tehran Branch, Islamic Azad University, Tehran, Iran
  • Afshin Ashja-Ardalan PhD Candidate, Department of Geology, North Tehran Branch, Islamic Azad University, Tehran, Iran
  • Alireza Gangi Assistant Professor, Department of Geology, Lahijan Branch, Islamic Azad University, Gilan, Iran
  • Saeid Hakimi Asiabar Assistant Professor, Department of Geology, Lahijan Branch, Islamic Azad University, Gilan, Iran
  • Mohammad Ali Arian Assistant Professor, Department of Geology, North Tehran Branch, Islamic Azad University, Tehran, Iran


Lithological mapping, argillic, Propylitic, Alteration Zones, Anjerd


Anjerd area is part of Arasbaran volcanic-magmatic terrain in northwestern Iran. The area is covered by multiple intrusive bodies of diverse compositions, volcanic, volcaniclastic, sedimentary and young alluvial deposits. The usefulness of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for the lithologic mapping of the area and identification of alteration zones is investigated in this study. To carry out the study, one ASTER frame was atmospherically calibrated by Internal Average Relative Reflectance (IARR). The False Color Composite (FCC) and Principal Component Analysis (PCA) images were used for discriminating lithologic units along with Spectral Angle Mapper (SAM) and Matched Filtering (MF). The pure endmember image spectra were extracted from Pixel Purity (PPI) algorithm. The results showed that PCA and FCC can be used to discriminate sedimentary rocks from magmatic and volcanic rocks. Because feldspars and quartz are relatively featureless in shortwave infrared (SWIR) spectral region the methods were not capable to distinguish between various magmatic rocks except for basalts with darker color and higher pyroxene content. The MF gave better results than SAM algorithm and therefore MF is recommended over SAM for studying similar terrains. The argillic and propylitic alteration zones were detected by band ratios. The results showed that MF algorithm in combination with band ratios can be used to distinguish magmatic rocks from sedimentary rocks and delineate the alteration zones


ABDEEN, M. M.; ALLISON, T. K.; ABDELSALAM, M. G.; STERN, R. J. Application of ASTER band-ratio images for geological mapping in arid regions; the neoproterozoic Allaqi Suture, Egypt. In Annual meeting of Geological Society of America, United States of America, November 5-8, 2001 (Vol. 3, pp. 289, Vol. 3): Geological Society of America.

ADAMS, J. B.; GOULLUD, L. H. Plagioclase feldspars: Visibile and near infrared diffuse reflectance spectra as applied to remote sensing. Paper presented at the Proceedings of the Lunar and Planetary Science Conference, 1978.

AGARD, P.; OMRANI, J.; JOLIVET, L.; WHITECHURCH, H.; VRIELYNCK, B.; SPAKMAN, W. Zagros orogeny: a subduction-dominated process. Geological Magazine: Geodynamic evolution of the Zagros, 148(5-6), 2011. p. 692-725. doi: 10.1017/S001675681100046X.

ALAVI, M. Structures of the Zagros fold-thrust belt in Iran. American Journal of Science, 307(9), p. 1064-1095, 2007. doi:10.2475/09.2007.02.

ASADZADEH, S.; SOUZA FILHO, C. R. A review on spectral processing methods for geological remote sensing. International Journal of Applied Earth Observation and Geoinformation, 47, 2016. P. 69-90, doi:10.1016/j.jag.2015.12.004.

ASHRAFI, N.; HASEBE, N.; JAHANGIRI, A. Cooling history and exhumation of the Nepheline Syenites, NW Iran: Constraints from Apatite fission track. Iranian Journal of Earth Sciences, 10(2) 2018. p. 109-120.

BABAKHANI, A. R.; LESQUYER, J. L.; RICO, R. Geological Map of Ahar Quadrangle (Scale 1:250,000). Tehran: Geological Survey of Iran, 1990.

BALDRIDGE, A. M.; HOOK, S. J.; GROVE, C. J.; RIVERA, G. The Aster Spectral Library version 2.0. Remote Sensing of Environment, 113, 2009. p. 711–715.

BARATIAN, M.; ARIAN, M.A.; YAZDI, A. (2020) Petrology and Petrogenesis of Siah Kooh volcanic rocks in the eastern Alborz, GeoSaberes, v. 11, 2020. p. 349-363. DOI:

BAZIN, D.; HÜBNER, H. Copper Deposits in Iran. International Report (Vol. 13, pp. 87-93). Tehran: Geological Survey of Iran, 1969.

BEN-DOR, E.; KRUSE, F. A. The relationship between the size of spatial subsets of GER 63 channel scanner data and the quality of the Internal Average Relative Reflectance (IARR) correction technique. International Journal of Remote Sensing, 15, 1994. p. 683-690, doi:10.1080/01431169408954107.

BERNSTEIN, L. S.; JIN, X.; GREGOR, B.; GOLDEN, S. M. A. Quick atmospheric correction code: algorithm description and recent upgrades. Optical Engineering, 51, 11, 2012. doi:10.1117/1.OE.51.11.111719.

BERTOLDI, L.; MASSIRONI, M.; VISONÀ, D.; CAROSI, R.; MONTOMOLI, C.; GUBERT, F. Mapping the Buraburi granite in the Himalaya of Western Nepal: Remote sensing analysis in a collisional belt with vegetation cover and extreme variation of topography. Remote Sensing of Environment, 115, 2011, p. 1129-1144. doi:10.1016/j.rse.2010.12.016.

BIERWITH, P. Evaluation of ASTER Satellite Data for Geological Applications. Consultancy Report to Geoscience Australia. Canada, 2002.

BOARDMAN, J. W.; KRUSE, F. A.; GREEN, R. O. Mapping target signatures via partial unmixing of AVIRIS data. Fifth JPL Airborne Earth Science Workshop Summaries, v. 95-1, 1995. p. 23-26.

CLARK, R. N.; KING, T. V. V.; KLEJWA, M. K.; SWAYZE, G. A.; VERGO, N. High Spectral Resolution Reflectance Spectroscopy of Minerals. Journal of Geophysical Research, 95, 1990. p. 12653-12680. doi:10.1029/JB095iB08p12653.

CROSTA, A. P.; MCMOORE, J. Enhancement of landsat Thematic Mapper imagery for residual soil mapping in SW Minas Gerais State Brazil: a prospecting case history in greenstone belt terrain. Paper presented at the Seventh Thematic Conference on RemoteSensing for Exploration Geology, ERIM, Calgary, Alberta, Canada, 1989.

CROWLEY, J. K. Mapping playa evaporite minerals with AVIRIS data: A first report from Death valley, California. Remote Sensing of Environment, 44, 1993. p. 337-356. doi:10.1016/0034-4257(93)90025-S.

CROWLEY, J. K.; BRICKEY, D. W.; ROWAN, L. C. Airborne imaging spectrometer data of the Ruby Mountains, Montana: mineral discrimination using relative absorption band-depth images. Remote Sensing of Environment, 29, 1989. p. 121– 134.

CROWN, D. A.; PIETERS, C. M. Spectral properties of plagioclase and pyroxene mixtures and the interpretation of lunar soil spectra. Icarus, 27(3), 1987. p. 492-506. doi:10.1016/0019-1035(87)90047-9.

DALTON, J. B.; BOVE, D. J.; MLADINICH, C. S.; ROCKWELL, B. W. Identification of spectrally similar materials using the USGS Tetracorder algorithm: The calcite-epidote-chlorite problem. Remote Sensing of Environment, 89, 2004. p. 455-466, doi:10.1016/j.rse.2003.11.011.

GAO, B. C.; MONTES, M. J.; DAVIS, C. O.; GOETZ, A. F. H. Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sensing of Environment, 113, 2009. p. 17-24. doi:10.1016/j.rse.2007.12.015.

GHADIMI, F.; KHAVARI, M. Comparison of original and weighted singularity indexin separation of Pb- Zn mineralized zone in the Haft Savaran district, Central Iran. Iranian Journal of Earth Sciences, 11(2) 2019. p. 160-170.

GREBBY, S.; CUNNINGHAM, D.; TANSEY, K.; NADEN, J. The impact of vegetation on lithological mapping using airborne multispectral data: A case study for the north Troodos region, Cyprus. Remote Sensing, 6, 2014. p. 10860-10887, doi:10.3390/rs61110860.

HEZARKHANI, A. Geochemistry of the Enjerd Skarn and Its Association with Copper Mineralization, Northwestern Iran. International Geology Review, 48, 2007. p. 892–909, doi:10.2747/0020-6814.48.10.892.

HEZARKHANI, A. Petrology of the intrusive rocks within the Sungun Porphyry Copper Deposit, Azerbaijan, Iran. Journal of Asian Earth Sciences, 27, 2006. p. 326-340.

HORGAN, B. H. N.; CLOUTIS, E. A.; MANN, P.; BELL III, J. F. Near-infrared spectra of ferrous mineral mixtures and methods for their identification in planetary surface spectra. Icarus, 234, 2014. p. 132-154, doi:10.1016/j.icarus.2014.02.031.

HUNT, G. R. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42(3), 1977. p. 501– 513.

HUNT, G. R.; SALISBURY, J. W.; LENHOFF, C. R. Visible and nearinfrared spectra of minerals and rocks: V. Halides, phosphates, arsenates, vanadates, and borates. Modern Geology, 3, 1972. p. 121– 132.

JAMSHIDIBADR, M.; TARABI, S.; GHOLIZADEH, K. Study of micro-textures and chemistry of feldspar minerals of East Sarbisheh volcanic complex (Eastern Iran), for evidence of magma chamber process. Iranian Journal of Earth Sciences, 12(1) 2020. p. 10-31.

KALINOWSKI, A.; OLIVER, S. ASTER Mineral Index Processing Manual. (pp. 36). Australia: Geoscience Australia, 2004.

KRUSE, F. A. Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California. Remote Sensing of Environment, v. 24, 1988. p. 31-51.

KRUSE, F. A.; LEFKOFF, A. B.; BOARDMAN, J. B.; HEIDEBRECHT, K. B.; SHAPIRO, A. T.; BARLOON, P. J. The Spectral Image Processing System (SIPS) – Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sensing of Environment, 44, 1993. p. 145–163.

MADANI, A.; EMAM, A. A. SWIR ASTER band ratios for lithological mapping and mineral exploration: A case study from El Hudi area, southeastern desert, Egypt. Arabian Journal of Geosciences, 4, 2009. p.45–52.

MEER, F. D.; DERWERFF, H. M. A. V.; RUITENBEEK, F. J. A. V. Potential of ESA's Sentinel-2 for geological applications. Remote Sensing of Environment, 148, 2014. p. 124-133, doi:10.1016/j.rse.2014.03.022.

MOLLAI, H. Petrochemistry and genesis of the granodiorite and associated iron-cooper skarn deposit of Mazraeh, Ahar, East-Azarbayjan, Iran, 1991.

MOLLAI, H.; DAVE, V. K. S.; SHARMA, R. Copper mineralization at Mazraeh NorthWest of Iran: Evidences for fluid evolution and Skarn deposit. Ore Geology Reviews, 2009

MOLLAI, H.; SHARMA, R.; PE-PIPER, G. Copper mineralization around the Ahar batholith, north of Ahar (NW Iran): Evidence for fluid evolution and the origin of the skarn ore deposit. Ore Geology Reviews, 35(3-4), 2009a. p. 401-414, doi:10.1016/j.oregeorev.2009.02.005.

NAZEMI, E.; ARIAN, M. A.; JAFARIAN, A.; POURKERMANI, M.; YAZDI, A. Studying The Genesis Of Igneous Rocks In Zarin-Kamar Region (Shahrood, Northeastern Iran) By Rare Earth Elements, Revista Gênero e Direito, 8(4), 2019. p. 446-466. DOI:

RAJENDRAN, S.; HERSI, O. S.; AL-HARTHY, A.; AL-WARDI, M.; EL-GHALI, M. A.; AL-ABRI, A. H. (). Capability of advanced spaceborne thermal emission and reflection radiometer (ASTER) on discrimination of carbonates and associated rocks and mineral identification of eastern mountain region (Saih Hatat window) of Sultanate of Oman. Carbonates and Evaporites, 26, 2011. p. 351-364, doi:10.1007/s13146-011-0071-4.

RAJENDRAN, S.; NASIR, S. ASTER spectral sensitivity of carbonate rocks - Study in Sultanate of Oman. Advances in Space Research, 53, 2014. p. 656-673, doi:10.1016/j.asr.2013.11.047.

RAJENDRAN, S.; NASIR, S.; KUSKY, T. M.; GHULAM, A.; GABR, S.; EL-GHALI, M. A. K. Detection of hydrothermal mineralized zones associated with listwaenites in Central Oman using ASTER data. Ore Geology Reviews, 53, 2013. p. 470–488, doi:10.1016/j.oregeorev.2013.02.008.

RASOULI BEIRAMI, M., & TANGESTANI, M. H. A New Band Ratio Approach for Discriminating Calcite and Dolomite by ASTER Imagery in Arid and Semiarid Regions. Natural Resources Research, 2020. doi:10.1007/s11053-020-09648-w.

RICHTER, R.; SCHLÄPFER, D. Atmospheric / Topographic Correction for Satellite Imagery: ATCOR-2/3 User Guide, Version 8.2 BETA. (8.2 BETA ed., pp. 203). Switzerland: ReSe, 2012.

ROCKWELL, B. W.; HOFSTRA, A. H. Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data—Implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. Geosphere, 4, 218, 2008. doi:10.1130/GES00126.1.

ROWAN, L. C.; MARS, J. C. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, 84, 2003. p. 350-366. doi:10.1016/S0034-4257(02)00127-X.

ROWAN, L. C.; MARS, J. C.; SIMPSON, C. J. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote Sensing of Environment, 99(1), 2005. p. 74–87, doi: 10.1016/j.rse.2004.11.021.

RSI ENVI user’s guide, the environment for visualizing images, version 4.1. Boulder, Colorado: Research Systems Incorporated, 2004

SINCLAIR, W. D. Porphyry deposits. In M. D. Division (Ed.), Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny. the Evolution of Geological Provinces, and Exploration Methods, Canada: Geological Association of Canada, 2007. p. 223-243.

SINGER, R. B. Near‐infrared spectral reflectance of mineral mixtures: Systematic combinations of pyroxenes, olivine, and iron oxides. Journal of Geophysical Research, 1981. p. 7967-7982, doi:10.1029/JB086iB09p07967.

TANGESTANI, M. H.; MAZHARI, N.; AGAR, B.; MOORE, F. Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for alteration zone enhancement in a semi‐arid area, northern Shahr‐e‐Babak, SE Iran. International Journal of Remote Sensing, 29, 2008. p. 2833-2850, doi:10.1080/01431160701422239.

TARABI, S.; EMAMI, M. H.; MODABBERI, S.; SHEIKH ZAKARIAEE, S.J. Eocene-Oligocene volcanic units of momen abad, east of Iran: petrogenesis and magmatic evolution. Iranian Journal of Earth Sciences, 11(2) 2019. p. 126-140.

TESTA, F. J.; VILLANUEVA, C.; COOKE, D. R.; ZHANG, L. Lithological and Hydrothermal Alteration Mapping of Epithermal, Porphyry and Tourmaline Breccia Districts in the Argentine Andes Using ASTER Imagery. Remote Sensing, 10(2), 203, 2018. doi:10.3390/rs10020203.

WOLTERS, J. M.; GOLDIN, L.; WATTS, D. R.; HARRIS, N. B. W. Remote sensing of gneiss and granite in southern Tibet. In: Annual meeting of Geological Society of America, United States of America, November 5-8, 2001 (Vol. 37, pp. 93): Geological Society of America, 2005.

YAMAGUCHI, Y.; NAITO, C. Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands. International Journal of Remote Sensing, 24(22), 2003. p. 4311–4323, doi:10.1080/01431160110070320.

YASREBI, A.B.; HEZARKHANI, A. Resources classification using fractal modelling in Eastern Kahang Cu-Mo porphyry deposit, Central Iran. Iranian Journal of Earth Sciences, 11(1) pp 2019. p. 56-67.

YAZDI, A.; ASHJA-ARDALAN, A.; EMAMI, M. H.; DABIRI, R.; FOUDAZI, M. Magmatic interactions as recorded in plagioclase phenocrysts of quaternary volcanics in SE Bam (SE Iran). Iranian Journal of Earth Sciences, 11(3): 2019. p. 215-224.

YAZDI, A.; ASHJA-ARDALAN, A.; EMAMI, MH.; DABIRI, R .; FOUDAZI, M. Chemistry of Minerals and Geothermobarometry of Volcanic Rocks in the Region Located in Southeast of Bam, Kerman Province. Open Journal of Geology. 7 (11), 2017. P. 1644-1653, doi: 10.4236/ojg.2017.711110

YAZDI, A.; SHAHHOSINI, E.; DABIRI, R.; ABEDZADEH, H. Magmatic Differentiation Evidences And Source Characteristics Using Mineral Chemistry In The Torud Intrusion (Northern Iran). Revista GeoAraguaia, 9(2): 2019. p. 6-21.

ZAINI, N.; VAN DER MEER, F.; VAN DER WERFF, H. Determination of Carbonate Rock Chemistry Using Laboratory-Based Hyperspectral Imagery. Remote Sensing, 6(5), 2014. p. 4149-4172, doi:10.3390/rs6054149.

ZAINI, N.; VAN DER MEER, F.; VAN DER WERFF, H. Effect of grain size and mineral mixing on carbonate absorption features in the SWIR and TIR wavelength regions. Remote Sensing, 4, 2012. p. 987-1003. doi:10.3390/rs4040987.




Como Citar

Bagheri, M. ., Ashja-Ardalan, A., Gangi, A., Asiabar, S. H., & Arian, M. A. (2021). Lithological Mapping and Identification of Argillic and Propylitic Alteration Zones at Anjerd Volcanic Terrain. Revista Geoaraguaia, 11(1), 27-53. Recuperado de




Artigos mais lidos pelo mesmo(s) autor(es)