Univariate models to represent the diametric distribution of thinned stand of Tectona grandis Linn.F

Authors

  • João Paulo Sardo Madi joaosardomadi@gmail.com
    Graduate Program in Forestry and Environmental Sciences - UFMT
  • Diogo Guido Streck Vendruscolo diogoguido@hotmail.com
    Graduate Program in Forestry and Environmental Sciences - UFMT
  • Carlos Alberto Silva carlos_engflorestal@outlook.com
    University of Idaho
  • Mariana Peres de Lima Chaves e Carvalho marianaperes@ufmt.br
    Federal University of Mato Grosso
  • Samuel de Pádua Chaves e Carvalho sam.padua@gmail.com
    Federal University of Mato Grosso

DOI:

10.34062/afs.v4i2.4726

Keywords:

Probability model, Parametric Statistics, Teak, AIC

Abstract

The aim of this study was to evaluate the performance of probabilistic distribution models for predicting the number of trees in a teak plantation located in the Nossa Senhora do Livramento city, state of Mato Groso, central region in Brazil. In the field, the diameters at breast height (DBH) of 203 trees of seminal origin, at 16 years of age, were measured in 2015. A descriptive analysis of the DBH was performed. Five models were used to fit a diametric distribution of the teak trees at the stand level: Normal, Normal Log, Gamma and Weibull with two parameters (2P) and three parameters (3P). For the purpose of comparison and selection of the best model, the Akaike Information Criterion (AIC) was used. After fitting the models, a simulated dataset was used to compute the accuracy of the number of trees estimated at stand level in each model. Among the fitted models, Weibull 3P was the one that presented the best fit, followed by the Log Normal, Gamma, Normal and Weibull 2P according to the AIC values. For the simulated dataset, the best result was Weibull 2P. When evaluated the accuracy of the model we found a maximum deviance to the Normal Distribution (27.78%).

References

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22 (6):711-728.

Akaike HA (1974) A new look at statistical model identification. IEEE Transactions automatic control, Tokio, 19 (6):717-723.

Akaike H (1981) Likelihood of a model and information criteria. Journal of econometrics, amsterdan, 16 (1):3-14.

Araújo Júnior CA, Leite HG, Castro RVO, Binoti, DHB, Alcântara AEM, Binoti MLM da S (2013) Modelling the diameter distribution of eucalyptus stands using the gamma function. Cerne, 19(2):307-314. doi: http://dx.doi.org/10.1590/S0104-77602013000200015

Arnold TW (2010) Uninformative Parameters and Model Selection Using Akaike’s Information Criterion. Journal of Wildlife Management, 74(6): 1175-1178. doi: 10.2193/2009-367

Binoti DHB, Leite HL, Silva MLM da S (2016) Computer System for Adjusting the Probability Density Functions. Floram, In press. doi: http://dx.doi.org/10.1590/2179-8087.081514

Binoti DHB, Binoti MLM da S, Leite HG, Fardin L, Oliveira JC (2012) Probability density function for description of diameter distribution in thinned stands of Tectona grandis. Cerne, 18(2):185-196. doi: http://dx.doi.org/10.1590/S0104-77602012000200002

Binoti DBH, Leite HG, Guimarães DP, Silva MLM da, Garcia SLR, Fardin LP (2011) Efficiency of the weibull and hyperbolic functions for describing the diametric distributions of Tectona grandis stands. Árvore, 35(2): 299-306. doi:http://dx.doi.org/10.1590/S0100-67622011000200014.

Burnham KP, Anderson DR (2002) Model selection and multi model inference: a practical information-theoretic approach. 2th edition. New York: Springer. 511p.

Campos JCC, Leite HG (2013) Mensuração florestal: perguntas e respostas. 4th edition. Viçosa: UFV. 605p.

Cunha Neto FV da, Vendruscolo DGS, Drescher, R (2016) Artificial form factor equations for Tectona grandis in different spacings. African Journal of Agricultural Research, 11(37): p.3554-3561, 2016. doi: 10.5897/AJAR2016.11379

Embrapa - Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solos (2006) Sistema Brasileiro de Classificação de Solos. 2th edition. Rio de Janeiro: Embrapa. 306p.

Figueiredo EO, Oliveira AD, Scolforo JRS (2005) economic analysis of unthinned stands of Tectona grandis L.f in the baixo rio acre microregion, Acre. Cerne, 11(4): 342-353. doi:<http://www.redalyc.org/pdf/744/74411404.pdf>. 01 Dez. 2016.

Indústria Brasileira de árvores – IBÁ (2016) O setor brasileiro de árvores plantadas. 100p.

Lana MD, Brandão CFL e S, Péllico Netto S, Marangon LC, Retslaff FA de S (2013) Distribuição diamétrica de Escheweilera ovata em um fragmento de floresta ombrófila densa - Igarassu, PE. Floresta, 43(1):59-68. doi: http://dx.doi.org/10.5380/rf.v43i1.25252

Leite HG, Nogueira GS, Campos JCC, Takizawa FH, Rodrigues FL (2006) . Árvore, 30(1): 89-98. doi: http://dx.doi.org/10.1590/S0100-67622006000100011

Medeiros RA (2016) Productive potential, management and experimentation in stands of Tectona grandis L.f. in the State of Mato Grosso. Thesis, Universidade Federal de Viçosa. 182p.

Nogueira GS, Leite HG, Campos JCC, Takizawa FH, Couto L (2006) Evaluation of a diametric distribution model adjusted for thinned Tectona grandis stands. Revista Árvore, 30(3): 377-387. doi: http://dx.doi.org/10.1590/S0100-67622006000300008

Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrology Earth System Sciences, 11: 1633–1644.

Pelissari AL, Guimarães PP, Behling A, Ebling A (2014) Teak cultivation: specie characteristics for the formation and conduction of forest stands. Agrarian Academy, 1(1): 127-145.

R development core team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at: <http://www.R-project.org/>. Access: Sep. 20 2015.

Ribeiro, A.; Ferraz Filho, A.C.; Scolforo, J.R.S.; Péllico Netto, S.; Machado, S.A. Estrutura da distribuição diamétrica em plantio experimental de candeia (Eremanthus erythropappus (DC.) MacLeish). Ciência Florestal, v.24, n.4, p.1055-1065, 2014.<http://dx.doi.org/10.1590/1980-509820142404024>.

Robinson A (2004) Preserving correlation while modelling diameter distributions. Canadian Journal of Forest Research, 34(1): 221-232.

Silva CA, Crookston NL, Hudak AT, Vierling LA (2015) rLiDAR: An R package for reading, processing and visualizing LiDAR (Light Detection and Ranging) data, version 0.1. 2015. Accessed Oct. 15 2015, < http://cran.rproject.org/web/packages/rLiDAR/index.html>.

Téo SJ, Bianchi JC, Peloso A, Nava PR, Marcon A, Ehlers T, Costa RH da (2012) Desempenho de funções de densidade probabilísticas para descrever a distribuição diamétrica de Pinus taeda, na região de Caçador, SC. Floresta, 42(4):741-754.

Venables, W. N.; Ripley, B. D. (2002). Modern Applied Statistics with S. Fourth Edition.Springer, New York. 2002.ISBN 0-387-95457-0.

Vismara ES (2009) Biomass measurement and models selection for biomass equations. Dissertation, Escola superior de Agricultura “Luiz de Queiróz”, Universidade de São Paulo. 102p.

Downloads

Published

2017-06-30