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ABSTRACT 

 

Until around 1800, Western philosophy believed that there were two types of conception in the world: 

the mental and the physical. Hence the extensive discussions about the analytical and synthetic 

knowledge that dominated the philosophy of Kant, the greatest Enlightenment philosopher. However, 

from the Peircean studies, the discussion about the conceptions has expanded, giving rise to the 

complementarity, which currently addresses the conceptions of extension and intension of logic and 

philosophy. In the educational context it is often claimed that mathematics is a language, since it 

provides both a means of communication and a substantiation of our thoughts. As a result, mathematical 

fluidity is now considered the most important. From this perspective, the pedagogical principles 

underlying mathematics teaching become similar to those used in language teaching. But mathematics 

is not mere language. Language is a wonderful instrument of the human spirit, yet it serves logic, poetics, 

and rhetoric far better than mathematics. Thus, this article aims to show that the approach of elementary 

mathematics education must consist in teaching to read a term beyond its correspondence between letters 

and sounds, and also to permit the understanding how a skill set can be worked completely in abstract 
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in relation to content. The semiotic methodology is utilized as input to analyze what is really the 

mathematics. 

 

Keywords: Semiotics. Complementarity. Language. Mathematics. 

 

RESUMO 

 

Até por volta de 1800, a filosofia ocidental acreditava que havia dois tipos de concepção no mundo: as 

mentais e as físicas. Daí, as extensas discussões sobre o conhecimento analítico e sintético que dominou 

a filosofia de Kant, o maior filósofo do Iluminismo. Porém, a partir dos estudos peirceanos, a discussão 

sobre as concepções ampliou, dando origem à complementaridade, que, atualmente, aborda as 

concepções de extensão e de intensão da lógica e da filosofia. No contexto educacional frequentemente 

se afirma que a matemática é uma linguagem, uma vez que ela fornece tanto um meio de comunicação 

quanto uma substanciação dos nossos pensamentos. Como consequência, a fluidez matemática passa a 

ser considerada a mais importante. Nessa perspectiva, os princípios pedagógicos subjacentes ao ensino 

da matemática se tornam semelhantes aos utilizados no ensino de línguas. Mas, a matemática não é mera 

linguagem. A linguagem é um instrumento maravilhoso do espírito humano, contudo serve muito 

melhor à lógica, à poesia e à retórica do que à matemática. Dessa forma, este artigo objetiva mostrar que 

a abordagem da educação matemática elementar deve consistir em ensinar a ler um termo além da sua 

correspondência entre letras e sons, e também em permitir a compreensão de como um conjunto de 

habilidades pode ser trabalhado completamente de forma abstrata em relação ao conteúdo, abrangendo 

a complementaridade de intensão e extensão. A metodologia semiótica é utilizada como aporte para 

analisar sobre o que é realmente a matemática. 

 

Palavras-chave: Semiótica. Complementaridade. Linguagem. Matemática. 

 

 

1 INTRODUCTION 

 

The illustrious mathematician Reuben Hersh (1927-2020), already questioned, in 1997, 

What is Mathematics really? in his book with the same name. He proposed to consider 

mathematical objects as social entities and to recognize that mathematics is an essentially social 

reality with intention in to avoid the alternative of idealism versus empiricism. Social entities, 

he said: “have mental and physical aspects, but none is a mental or a physical entity” (1997, p. 

14).  For him, questions about the nature of mathematical objects could only be answered from 

a social perspective. From this understanding we can conclude that the concept of a theory has 

evolved in parallel with the changes in our view of society. 

An example of a changing values of society can be characterized by the French 

Revolution. Louis XVI (1754 -1793), the last King of France before the fall of the monarchy, 

could not accept how Robespierre (1758-1794) and the Jacobins could put him on trial, because 

traditionally the king himself was the state and the law. How can one bring the king’s case to 

court, if he himself embodies the law?  

The modern states and modern societies emerged in the aftermath of the French 

Revolution and were characterized by individualistic ideals (freedom, equality), on the one 
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hand, and a formal structure of laws and the legal systems, on the other hand. The Code Civil 

des Français as well as the Code penal transformed traditional society which until then was 

organized around formal social stratification such as caste or class into modern society. 

The formal structure of laws was a product of opinions adopted by Romantics in France 

and Germany that transformed knowledge, and especially mathematics, as much as opinions 

about our place in society and in the universe. For lack of space, we quote two witnesses, 

Novalis (1772-1801)6  and Georg Hamann (1730-1788), respectively. 

Novalis: 

 

The designation by tones and strokes is an admirable abstraction. Four letters signify 

God to me; a few strokes a million things. How easy is the handling of the Universe, 

how vividly the concentricity of the spiritual world! Language theory is the dynamics 

of the spiritual kingdom. A command moves armies; the word freedom nations (1960, 

p.412, our translation). 

 

Hamann: 

 

A law is never as disturbing and insulting as a verdict based on convenient approval. 

The first does not touch my self-esteem at all, and extends to my action alone, 

therefore equates all those who are in the same situation. An arbitrary decision without 

a law is always a bondage for us (1988, p. 59, our translation).  

 

The language for Hamann is exactly the opposite of what was affirmed by the linguistic 

theories of the Enlightenment. Both Novalis and Hamann emphasized the creativity of language 

and symbolism, since everything seems to be dissolved in language or semiotics in general. 

The view of mathematics as a language has been especially emphasized among scholars 

of logic, the humanities as well as in educational contexts. According to Edward Effros (1935-

2019), even if the premise is that mathematics is a language, since it provides both a means of 

communication and a substantiation of our thoughts, and even though this aspect of 

mathematics explains its role Fundamental to modern science, the argument that we should 

focus on teaching problem solving methods represents a basic misunderstanding about the 

purpose of mathematical education. After all, we don’t include algebra in the high school 

curriculum to allow students to solve word problems (1998). 

Norbert Wiener (1894-1964) elucidates these transformations from a functional view to 

theoretical structuralism by characterizing the new intellectual individualism by stating that: 

                                                 
6 Georg Philipp Friedrich von Hardenberg (1772-1801), scientifically known by the pseudonym Novalis, was one 

of the most important representatives of German romanticism in the late 18th century. 
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[…] he who concentrates on his own mental states will concentrate, when he becomes 

a mathematician, on the proof of mathematical theorems, rather than on the theorems 

themselves, and will be compelled to object to inadequate proofs of adequate 

theorems. […] To us, nowadays, the chief theme of the mathematicians of the 

Romantic period may sound most unromantic and repelling. The new mathematics 

devoted itself to rigor, […] What the new generation in mathematics had discovered 

was the mathematician; just as what the Romantics had discovered in poetry was the 

poet and what they had discovered in music was the musician (WIENER, 1951, p. 92-

96). 

 

This article will argue against the paradigm that mathematics is a language and in favor 

of it being an activity that changes according to the conceptions established by society. The 

methodological approach is based on peircean semiotics, with the contribution of a theoretical 

analysis that seeks to demystify the reality of mathematical objects. 

 

2 WORDS AND THINGS 

 

Before the Scientific Revolution of the 17th century, classical knowledge was 

completely determined by its object. To think meant to think about one’s own being. The nature 

of scientific thought was in the very understanding of what existed. “The Aristotelian logic, in 

its general principles, is a true expression of the Aristotelian metaphysics” (CASSIRER, 1953, 

p. 4), and the methods of investigation have always had to be congruent with the objects 

investigated. 

Then, at some point in history, it happened that words and things separated and the 

common interpretation of our sensory impressions seemed to become totally unreliable. “Since 

the late 16th century, more and more authors opt for the certainty of the method and the 

mathematical method therefore gains in importance, because it is the safest” (SCHÜLING, 

1969, p. 76, our translation). It is a merit that Michel Foucault (1926-1984) brought this concept 

to the center of our attention. At the beginning of the 17th century, Foucault stated: 

 

[…] writing has ceased to be the prose of the world, resemblances and signs have 

dissolved their former alliance; similitudes have become deceptive. […] Thought 

ceases to move in the element of resemblance. Similitude is no longer the form of 

knowledge but rather the occasion of error, […] ‘It is a frequent habit’, says Descartes, 

in the first lines of his Regulae, ‘when we discover several resemblances between 

things, to attribute to both equally, even on points in which they are really different, 

that which we have recognized to be true of only one of them’. The age of resemblance 

is drawing to a close. […] And just as interpretation in the sixteenth century […] was 

essentially a knowledge based upon similitude, so the ordering of things by means of 

signs constitutes all empirical forms of knowledge as knowledge based upon identity 

and difference (1973, p. 47-51 e p. 56-57). 
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Several authors pointed out that the main impact of the Scientific Revolution of the 

16th/17th century came from a change in habits of thought and, in particular, from a campaign 

for individual cognitive certainty. It was the central problem of René Descartes (1596-1650) 

and the general objective of his Discourse on the Method. “I was especially delighted with the 

mathematics because of the certitude and evidence of their reasonings. But in the beginning, I 

did not realize its genuine usefulness, thinking that they had but contributed to the advancement 

of the mechanical arts” (DESCARTES, 2001, Part I).  

There was, however, a second problem of knowledge caused by changes in social 

relations. A person is a manifestation of social existence within a space of possibilities and 

situated within a world and a cultural tradition. Hence the controversy between the analytical 

perspective of say Gottfried Leibniz (1646-1716) and the intuitive and geometrical view of 

Descartes. 

According to Ian Hacking (1936) “Leibniz was sure that mathematical truth is 

constituted by proof, while Descartes thought that truth conditions have nothing to do with 

demonstrations” (1984, p. 211). This does not mean that Descartes was less concerned with 

truth or certainty. On the contrary: “The one activity in the world, which really does concern 

Descartes, is thought and the pursuit of truth. Had he composed the Lord's Prayer, it would no 

doubt have contained the invocation ‘and lead us not into error’” (GELLNER, 1992, p. 7).  

An arguably important personification of Cartesian individualism, as well as Leibniz’s 

social concerns, can be found in the Protestant movement and its principle of Sola scriptura. 

Martin Luther (1483-1546), having been summoned by Emperor Charles V to renounce his 

religious teachings, demanded that his errors be proved in the Bible. The text of the Bible was 

the only authority to which he would bow. The young emperor was genuinely shocked. If it 

were granted to defend oneself in the light of the scriptures to those who contradict the advice 

and common understanding of the State and the Church, then “[...] will have nothing in 

Christianity that is certain or decided” (RYRIE, 2017, p. 28). 

For Leibniz in the centuries 16th/17th mathematics or logic was an art of producing 

proofs which should convince people to accept something and to educate them. Leibniz did not 

follow the Sola scriptura principle but relied rather on logical proofs of God’s existence. 

It is this transformation that Foucault has called the transition from a time of 

Interpretation to the age of Representation. And, thought is a sign, is a doctrine on which 

Leibniz and the “[...] thinkers of the years about 1700” all agree (PEIRCE, CP 5.470). The idea 
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of calculating with the famous unknown X of common algebra exemplifies the new open role 

signs had acquired. Since then semiotics has become a centerpiece of epistemology and 

mathematics is essentially an activity operating on symbols and diagrams, semiotics became a 

fundamental concern. 

From semiotics, the way of perceiving ideas changed completely. Now, we don’t need 

to defend one idea at the expense of another that is contradictory. Considering the contradictory 

examples between Leibniz and Descartes referenced above, it is possible to see that both had 

their reasons and their limitations. Currently, it is necessary to know the context of each 

situation to choose the best tool, the best path, the best truth. The semiotic perspective showed 

us that both Leibniz’s analytical thinking (reference) and Descartes’ intuitionism (sense) are 

important for the evolution of mathematics. 

To reinforce the understanding of the changes that occur over time and how they implied 

changes in the sciences, including mathematics education, we will present, next, 

transformations that occurred in the interpretation of geometry and algebra, through the 

development of some concepts, ideas, theories, perceptions and foundations that supported the 

sciences, as well as portray some implications in the mathematical sciences. 

 

3 TRANSFORMATION IN THE INTERPRETATION OF GEOMETRY 

 

The historical development of mathematics is conceived as a sequence of symbolic or 

linguistic innovations. In Euclid’s Elements, for example, one praises the scientific mind that 

appears in the organized arrangement of problems and theorem, but never realizes that Euclid’s 

geometry is a theory of figures in a metaphysical no-man’s-land and does not include a theory 

of space. Therefore, certain problems, like the problem of the duplication of the cube, for 

example, cannot be solved within the context of Euclidean geometry. The problem of the 

duplication of the cube, for example, can be solved easily however, using the principle of 

continuity. But the Greeks never arrived at the insight that in mathematics it might be 

conceivable to have a solution, that is totally divorced from constructability. 

The Copernican Revolution of Epistemology by Immanuel Kant (1724-1804) brought 

the idea of space, conceiving it as a kind of subjective means. “Space is not an empirical 

concept. […] Space is a necessary representation, a priori, which serves as the foundation of 

all external intuitions” (KANT, 1787, B39). Kant’s use of the idea of space is often criticized 
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in circles of analytical philosophy, however, it is criticized for the wrong reasons, namely for 

an insufficiency of its logic. Here is what Milton Friedman (1912-2006) writes: 

 

Kant’s conception of mathematical proof is of course anathema to us. Spatial figures, 

however produced, are not essential constituents of proofs, but at best aids (and very 

possibly misleading ones) […] The proof itself is a purely formal or conceptual object, 

ideally a string of expressions in a given formal language (1992, p. 58). 

 

For Friedman, mathematics is a matter of logic. According to analytical philosophy, 

formal mathematics and logic do not talk about objects. “They say nothing about objects, of 

which we want to speak, but deal only with the way we talk about objects” (HAHN, 1988, p. 

150). Thus, the proofs of classical geometry should perhaps be considered more appropriately 

in analogy to mental experiments in the natural sciences. 

According to Ian Mueller (1938-2010): 

 
Part of the difficulty is due to a failure to distinguish two ways of interpreting general 

statements like ‘All isosceles triangles have their bases angles equal’. Under one 

interpretation the statement refers to a definite totality [...] and it says something about 

each one of them. Under the other interpretation no such definite totality is 

presupposed, and the sentence has much more conditional character – ‘If a triangle is 

isosceles, its two base angles are equal’ (1969, p. 291). 

 

Thomas Kuhn (1922-1996) argues, in A Function for Experiments of Thought (1977), 

that the productivity of the thought experiment is due to its function of readjusting the 

relationship between a conceptual apparatus or a theory and the reality to which it is applied. 

Therefore, mental experiments can teach us something new about the world, although we have 

no new data, it helps us to reconceptualize the world in a better way. 

Considering what was exposed in B744 of Kant’s Critique of Pure Reason (1787), about 

the construction of his proof of the sum of the angles of a right triangle theorem, the following 

mental experiment seems, in fact, to reveal some limitations of the proof de Kant: Suppose we 

go through the perimeter of a triangle. How many degrees do we turn after we return to our 

starting position? Simple answer: 360 degrees, because our entrance direction coincides with 

the final one. This answer, however, while intuitively convincing and obvious, is based on the 

assumption that it is, on the one hand, the same as rotating the site by a total angle of 360 

degrees or, on the other hand, doing this by passing through a closed line at the perimeter of an 

arbitrarily large triangle. 

One case, however, is based on local characteristics of space, the other is not! For 

arbitrary triangles our conclusion is only valid in the Euclidean plane, but is invalid on the 
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surface of the sphere, for example, as everybody may perceive for himself quite easily. And 

Kant knew that we humans live on a sphere. Spherical geometry is a generalization of Euclidean 

geometry. Non-Euclidean geometries became accepted only after Eugênio Beltrami (1835-

1900) had proved their consistency in 1868. The ordinary sphere was received as a model of a 

space with positive curvature. 

Euclid deals with the angle-sum theorem of the triangle in proposition 32 of Book I: “In 

any triangle, if one of the sides is produced, then the exterior angle equals the sum of the two 

interior and opposite angles, and the sum of the three interior angles of the triangle equals two 

right angles”. 

The proof of this proposition makes use of propositions 13, 29, and 31, which in turn 

rely on propositions 11, 13, 15, 23 and 27, and so on, back to the postulates. This structure is 

not based on a logical-deductive connection, but it arises from the activity of solving plane 

geometric problems. And as such it shows closer affinity to Luitzen Egbertus Jan Brouwer 

(1881-1966) intuitionism than of is David Hilbert (1862-1943) axiomatic approach. In fact, 

Andréi Kolmogorov (1903-1987), one of the greatest mathematicians of the 20th century, 

interpreted Brouwer’s intuitionistic logic in terms of problems and solutions. To assert a 

formula is to claim to know a solution to the problem represented by that formula. For instance, 

P implies Q is the problem of reducing Q to P; to solve it, requires a method to solve problem 

Q, given a solution to problem P. Kolmogorov writes:  

 

In addition to the theoretical logic which systematizes the proof schemes of the 

theoretical truths, one can also systematize the solutions of problems, e.g. of 

geometric construction problems. In analogy to the principle of syllogism, the 

following principle holds here: if we can reduce the solution of b to the solution of a 

and the solution of c to the solution of b, then we can also reduce the solution of c to 

the solution of a. […] The following remarkable fact applies: According to its form, 

this task calculus coincides with Brouwer’s intuitionist logic, as formalized by Mr. 

Heyting (1932, p. 58, our translation).  

 

In this way, mathematical objects are established by the identity relation chosen. Since 

the 16th century at least congruence of plane figures was chosen as the most distinctive 

geometrical equivalence relation. What about Euclid and the Greeks? In the very short argument 

of §35 (theorem 25) of book I of Euclid’s Elements the word equal occurs more than 10 times, 

with three different meanings: congruence of flat figures, equality of area and numeric identity. 

The theorem reads: “The parallelograms which are on the same base and in between the same 

parallels equal one another”. 
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Figure 1 ‒ Diagram of Theorem 25 

Font: Euclides (2009, p. 124) 

 

The question arises what Euclid means in using the word equal? David Fowler (1937-

2004) says that the: “[...] the idea behind Euclid’s use of equality within geometry is one of size 

not one of shape and his concern is to see if two plane figures are equal in size” (1987, p. 13). 

This contradicts the common view of our textbooks, which since Leibniz already defines 

geometrical equality in terms of congruence. Fowler’s evaluation and judgment are supported 

by a number of passages from the Platonic dialogues. In the Republic we read for example: 

 

Now no one with a little experience of geometry will dispute that the science is 

entirely the opposite of what is said about it in the accounts of its practitioners […] 

They speak like practical men and all their accounts refer to doing things. They talk 

of squaring, applying, adding and the like, whereas the entire subject is pursued for 

the sake of knowledge. (PLATO, 1997, Rep. VII, 527 b). 

 

In this context, Euclid’s triangles or rectangles etc. are diagrams, that is, they are signs, 

in which the meaning or reference or extension is the thing itself. However, what the triangle 

represents is the world to which it belongs, and that world has undergone changes. Since the 

17th century, this world has been the world of science or theory as part of a science. 

Consequently, the sum of the angles of the triangle theorem would have to be analytical, which 

in fact it is, according to formal axiomatic geometry like that of Hilbert or Giuseppe Peano 

(1858-1932). According to the classical understanding of concepts or ideas, the order of 

extensions inverts the order of ideas. This led Leibniz, his contemporaries and his successors 

to define geometric equality in terms of congruence and not in terms of material identity. 

 

4 TRANSFORMATION IN THE INTERPRETATION OF THE ALGEBRA 

 

In the history of algebra, something similar can be noted Leonhard Euler (1707-1783) 

in Complete Guide to Algebra (1770) begins by introducing the notion of quantity and then that 

“arithmetic or the art of calculation deals with the numbers, it only affects activities in ordinary 

life, in contrast, algebra or analytics generally includes everything that can occur with numbers 

and their determination” (EULER, p. 5, chapter 1, §7, our translation). 
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All the difficulties that the Greeks had with the fact that the numbers are not actually 

quantities, are circumvented by identifying the magnitudes with their measurements, instead of 

considering the numbers as relationships between the measured magnitude and the scale used. 

As in geometry, this philosophical setback allowed for some progress on the active side of 

mathematics. This reduction in object relations was, in a sense, the result of Descartes’ view of 

analytical geometry. In this way, it always operates on a symbolic level and all progress has 

been attributed to the invention of new methods and new symbols. 

The story of so-called imaginary numbers is an example of this. These imaginary entities 

have brought great progress to the treatment of algebraic equations. But, while the imaginary 

unit gained acceptance of arithmetic only as a symbol for calculating, it also produced some 

strange confusions (NAHIN, 1998). Only after Carl Friedrich Gauss (1777-1855) presented a 

geometric interpretation to the imaginary unity of the model called the numerical-Gaussian 

plane, did it become a legitimate mathematical object, which later assumed an important role 

in mathematics and metamathematics. 

Only then algebra was no longer conceived of as an analytical language but as a theory 

of formal structures. The notation a + b (2)1/2 or if we abbreviate (2)1/2 by t: a.1 + b.t for the 

enlarged set of algebraic numbers suggests the idea of the concept of vector space (EULER, 

1770), because 1 and t are linearly independent vectors over the rationals, in exactly the same 

way, as 1 and i are linearly independent vectors over the reals. However, nobody saw and 

explored that analogy before the 19th century. Only after modern mathematics had discovered 

the complementary notions of set and structure pure mathematics developed. 

The scientist John David Barrow (1952-) still characterizes the algebraic spirit today in 

his book Perche il mondo e matematico? (1992) as follows: 

 

The mathematical language acts like a computer language, because it is primarily a 

language with a built-in logic. We know that we need not be so particular with 

ordinary language. If we do not keep strictly to the rules of grammar and syntax, we 

are nevertheless understood. But if we do not adhere to the rules of mathematical 

language, everything becomes meaningless. Frequently, students are instructed that 

they must think about things in order to understand them and to move forward. But in 

some sense, the greatest progress of human thought has incurred as a result that we 

have learned to do things without thinking (BARROW, 1992, p. 3, our translation). 

 

Jean-Victor Poncelet (1788-1867) identified the secret of algebraic generality 

elsewhere, claiming that it is as due to relational thinking and in particular to the principle of 

continuity. Friedrich Ludwig Gottlob Frege (1848-1925) expressed a similar idea by saying that 
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the ascent from arithmetic to algebra is due to functional thinking and based on the introduction 

of the function concept (FREGE, 1969). 

If we write down the following sequence of arithmetic expressions: 2.13 + 1, 2.23 + 2, 

2.33 + 3 and so on,  we could come up, concentrating on the common form, with the expression: 

2.x3 + x. That is, we might encounter the idea of a function. 

In this way, Frege reintroduced relational thinking into arithmetic, as the concept of 

function had already been known to mathematicians through Descartes’ theory of analytical 

geometry that constructed functions or curves, rather than geometric figures. Only through the 

concept of function did the notion of algebraic variable as well as the structural view of 

mathematical theory gain entry into mathematics. For this reason, Descartes can be said to be 

the first to really have a deep understanding of relational thinking. Probably Leibniz had already 

recognized this, however, he had criticized Descartes for not radically following the 

consequences from a formal axiomatic perspective. 

The concept of a mathematical function, on which the notion of natural law is based, 

“[…] applied to physical phenomena, appeared for the first time in the literature of mankind in 

a prescription for gunners in 1546” (ZILSEL, 2003, p. 110), eighteen years before the birth of 

Galileo Galilei (1564-1642) and exactly half a century before the birth of Descartes.  

The difference is that between an intensional (meaning) resp. extensional (reference) 

conception of a function (FONSECA, 2010). Either the function is identified with an algorithm 

or with some kind of free variable as part of a law of nature (intensional conception) or like in 

the famous general triangle or like in expressions like An apple is a fruit (extensional 

conception). 

In a proposition like an apple is a fruit it would be unnatural to interpret an apple as a 

placeholder, like Frege, because this presupposes that we have given individual names to all 

the apples in this world (QUINE, 1974). There are ideas of an apple or a triangle in general, or 

of a function but they turn out to be representations of particular ideas, put to a certain use.  

Pierre Boutroux (1880-1922), Jules Henri Poincaré (1854-1912) or Charles Sanders 

Peirce (1839-1914), have adopted the intensional (meaning)  perspective on functions, taking a 

function as a concept in its own right, while Georg Ferdinand Ludwig Philipp Cantor (1845-

1918), Bertrand Arthur William Russell (1872-1970) or Frege adopted the extensional 

(reference) perspective of functions, reduced functions to sets (OTTE, 1990). 

But as was said the Cartesian analogy between arithmetic and geometry accomplished 

both the identification of magnitudes with numbers as well as the geometrical interpretation of 
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algebraic equations. Descartes had in 1619 already tried to design a program and a method by 

which the problems of continuous and discrete magnitude could be treated analogically 

(ADAM; MILHAUD, 1936). 

The classical example that clearly demonstrates the complementarity of arithmetic and 

geometry or of the discrete and the continuous comes from Zeno’s paradox of Achilles and the 

tortoise. And this paradox could be resolved by passing from a set-theoretical view of the 

continuum to an intensional one, using the function concept. Let us see: Achilles runs ten times 

as fast as the tortoise, though the tortoise has a one stadium start. For each of the stages, x(x > 

0), covered by Achilles, the tortoise has crawled the distance f(x) = 1/10x + 1 stadium. 

This function as a model of the movement, or rather the relative movement of the 

tortoise to the standing position of Achilles, now enables us to reproduce the paradox on a new 

level because of its double character: the continuous aspect of the movement does not contradict 

the discrete perspective. It remains correct that the tortoise is at x(n+1) as soon as Achilles has 

reached xn. But the representation using the function concept enables us to liberate Achilles’ 

movement from the one-sided fixation on the discrete xi (i = 0, 1, ...), seeing the movement as 

a whole. 

That is, the relative movement of Achilles and the turtle is a linear function, because 

both movements are uniform: f(x) = ax + b (that is, when Achilles reaches x, the turtle is at f 

(x)). 

The question At what point does Achilles really catch up with the tortoise?, becomes 

now: What is the fix point of f(x)? The fixed point can be calculated simply as a function of the 

constants a and b: x = f(x) = ax + b. We seemingly have solved the problem by taking a 

relational point of view, that means by adopting a world view which provides objects and 

relations between objects with an equal ontological status.  

This essentially constitutes what has been called the transition from thinking about 

objects to complementary relational thinking. This transition took place only at the end of the 

18th century. In what sense is this a solution? The paradox of the movement leads to a 

complementarity in the function concept!  It shows the necessity of having the concept of the 

functional relation as a model or as a single mathematical object. And secondly, to have 

available the effectiveness of symbolic calculations, that allow us to write down the meeting 

point (OTTE, 1990). 

In this sense, mathematician Salomon Bochner (1899-1982) states: 
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Functions are a distinguishing attribute of modern mathematics, perhaps the most 

profoundly distinguishing of all. […] In its innermost structure Greek mathematics 

was a mathematics entirely without functions and without any orientation towards 

functions. […] By outward appearance Greek mathematics was geometrical rather 

than analytical and by inward structure it was representational rather than operational 

(1966, p. 217). 

 

5 MATHEMATIZED SCIENCE 

 

Jacob Klein (1899-1978) introduces his fundamental study on the transformation of the 

Hellenistic conception of mathematics and science with the following words: 

 

The creation of a formal mathematical language was of decisive significance for the 

constitution of modern mathematical physics. If the mathematical presentation is 

regarded as a mere device, preferred on only because the insights of natural science 

can be expressed by symbols in the simplest and most exact manner possible, the 

meaning of the symbolism, as well as of the special methods of the physical 

disciplines in general will be misunderstood (1992, p. 1). 

 

Let us observe in passing that the mathematization of natural science introduces 

representations, which even may contradict the physical facts. For example, Thomas Kuhn 

indicates that the term Mass has different meanings in classical Newtonian Mechanics and in 

Einstein’s Special Theory of Relativity: the Newtonian mass is stable, independent of velocity, 

whereas the Einsteinian one depends on the velocity. 

Considering the expression: m = m0 / (1- v2/c2)1/2, where m and mo are the mass and the 

initial mass, v is the body velocity and  c is the light velocity, when we assume that the light 

velocity c passes to infinity, we get m = m0. However, this passing to infinity is explicitly 

forbidden by the physical facts, as they became known through the Morley-Michelson-

Experiment. And it were these facts that stimulated Albert Einstein (1879-1955) of is relativity 

theory in the first place. 

Another interesting example where the formal mathematical representation contradicts 

physical reality is the following: if you want to change the conditions in an electrical network, 

you need different switches, which change the flow of electricity. One result of the formal 

automaton theory is that, regardless of the size and complexity of the network, one always 

manages with two switches of a certain type to reverse all directions of current flow in the lines. 

In the 1950s, on the other hand, mathematicians such as Andrei Andreyevich Markov (1856-

1922), who is a pioneer of constructive mathematics, have shown that contrary to mathematical 

representation, the number of inversion switches is not independent of the number of input and 
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output channels of the network. Lee Cecil Fletcher Sallows (1944-) has analyzed this 

contradiction between formal proof and objective reality and found that in the real machine 

certain feedbacks take place, due to the inertia of material systems. A current flow cannot be 

instantaneously be interrupted or vice versa. This ultimately leads to different effects than 

appear in the static diagram of mathematics. And Sallows concludes, that notion that everything 

can always be talked about in a different language is thus not without its pitfalls (1990). 

Therefore, we can see again that the mathematics of natural science depends on a 

relative independence of meaning and reference. 

Mathematics deals with objects, but these objects belong to some model world, to some 

limited universe of discourse, because mathematic is no empirical science, like physics or 

biology. Therefore, we have to create model worlds. And this fact provides the intensions and 

extensions of mathematical terms with equal importance, such that mathematics or logic are not 

merely formal languages.  

As an example, one might remind oneself of the intense debates between Frege and 

Hilbert or Russell and Peano. One topic in these discussions concerned the axiomatic 

presentation of number. Russell’s criticism was that the axiomatic characterization of number, 

led to a situation where: “[…] number-symbol becomes infinitely ambiguous. […] we want our 

numbers not merely verify mathematical formulae, but to apply in the right way to common 

objects” (RUSSELL, 1998, p.9). Russell seemed, however, not to have perceived clearly that 

formal axiomatics was a very general method of mathematics and that it was therefore in need 

of a some applications to establish its status as real knowledge. Now pure mathematics wanting 

to secure its autonomy as a profession and to free itself from all applications, choose set-

theoretical foundation as a substitute. But strictly formalistic mathematics, as it was developed 

by Hilbert’s school, did at first not pay sufficient attention to the burden of set-theoretic tools, 

which were strictly connected with axiomatics.  

There is another problem with the algorithmic or linguistic view of mathematics: you 

cannot perform impossibility proofs, such as doubling of the cube, trisecting of the angle, etc., 

which are, however, a kind of birth certificate of modern mathematics and culminate in the 

work of Friedrich Gödel (1906-1978). The proof of the impossibility of doubling the cube with 

Euclidean means, for example, became possible as soon as people modelled the geometrical 

constructions in arithmetical terms, creating the notion of constructible number and finally 

showed than the third root of 2 was not a constructible number. 
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6 CONCLUSION 

 

When we encounter something new and completely unknown, the only thing we can do 

is to represent it by some arbitrary symbol or name. We can even represent the completely 

unknown, using some index as in the case of the famous x of symbolic algebra, or in the context 

of the hypothetical deductive reasoning of axiomatic theory. 

On many occasions it is not sufficient to have an idea. One has to act and to apply it. An 

algebraic equation should be solvable, a theory should be applicable, a machine should work, 

and a scientific concept is essentially a function. A lamp that gives no light, a knife that does 

not cut, a corkscrew that does not pull out the cork, they all are useless, are nothing. 

Mathematical or scientific representations gain their significance only in the application. 

Formal axiomatic structures or theories are instruments in the same way as maps or diagrams 

or symbols, etc.  

The truth and the foundations of an axiomatic theory lie therefore in the future in the 

intended applications. Any formal axiomatic theory possible has quite a number of different 

intended applications. What the axioms describe are concepts or classes of objects, rather than 

particular objects themselves. Peano’s axioms do not answer the question: What are numbers, 

what is the number 1 or 2? Numbers could be anything, even games (Conway-Numbers, 

Hackenbusch-Games, Chessboard-Computer, etc.).  

Thus, as has already been said, modern mathematics or theoretical science speak in 

terms of complementary notions of set and structure. The objectivity and operational 

development of the concepts are interconnected. This interest in the operative fertility of 

scientific and mathematical concepts grew enormously during the Scientific Revolution that 

began in the 16th century and continued until the 18th century. 

Descartes’ concern concerns the issue of internal representation – an idea – that provides 

us with the information. The similarity between representation and represented will not be 

maintained, given the nature of the causal interaction between the observer and the world. 

Descartes believed more in problem solving than in building formal theories and evidence. 

Leibniz believed in formal theory and logical identity. Leibniz invented formal proof as we 

know it today (HACKING, 1984). 

Leibniz, however, obtained the essential ideas of the arithmeticization of Descartes’ 

geometry, which was, at the same time, also a geometrization of arithmetic. He criticized 

Descartes for not going far enough in the search for the first axiomatic foundations of 
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knowledge. Descartes was a geometer and was not very fond of arithmetic or algebra, and 

Leibniz was a formalist and algebraic. Descartes’ intuitions were personal and could not be 

taught and communicated. However, they are more fertile than any formal proof. In contrast, 

Ian Hacking writes: 

 

We have usually read him as an ego, trapped in the world of ideas, trying to find out 

what corresponds to his ideas, and pondering questions of the form, ‘How can I ever 

know?’ Underneath his work lies a much deeper worry. […] one is led, I think, to a 

new kind of worry. I cannot doubt an eternal truth when I am contemplating it clearly 

and distinctly. But when I cease to contemplate, it is a question whether there is truth 

or falsehood in what I remember having perceived. Bréhier suggested that 

demonstrated propositions may go false […] They exist in the mind only as 

perceptions. Do they have any status at all when not perceived (1984, p. 220-221). 

 

Hacking makes a mistake, because scientific or mathematical knowledge is social 

knowledge. Descartes, as a mathematician, was satisfied when he was able to solve his 

problems and was not interested in building universal theories and demonstrating eternal truths. 

We must remember that the same divergences still prevail today. 

William Timothy Gowers (1963-), renowned mathematician and medalist Fields (1998), 

addresses a similar situation in today’s mathematical culture, identifying two different cultures 

in fact: 

 

The two cultures I wish to discuss will be familiar to all professional mathematicians. 

Loosely speaking, I mean the distinction between mathematicians who regard their 

central aim as being to solve problems, and those who are more concerned with 

building and understanding theories (2000, p. 65).  

 

Gowers sees himself as a problem solver, identifying Michael Francis Atiyah (1929-

2019), another Fields medalist of (1966) as a theoretician and as his counterpart.  

The duty of language in all areas of human self-reflection is to repeat the same things in 

ever new ways. Only thereby can Man try to become aware of himself and of his destiny. 

However, mathematics is not a language and here applies what Sallows had observed in 1900, 

namely that the notion that everything can be talked about in a different language is not without 

its pitfalls. 

The elementary mathematical education approach consists, not only, of reading a term 

in addition to its correspondence between letters and sounds, but also to understanding how a 

set of skills can be worked in a completely abstract way to the content, encompassing the 

complementarity of meaning and reference. The epistemological historical context in 
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Foucault’s words and things, the transformations in the interpretation of geometry and algebra 

and the mathematics of natural science, exemplify a relative independence of meaning and 

reference. Culminating in the importance of discussing and studying more closely the 

complementarity of meaning and reference in mathematical education. 
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