ESTRATÉGIAS NUTRICIONAIS PARA AUMENTAR AS PROPRIEDADES NUTRACÊUTICAS DO LEITE: CONCENTRAÇÕES DE ENTEROLACTONA E ÁCIDO LINOLEICO CONJUGADO

Autores

DOI:

10.31413/nativa.v9i4.11988

Palavras-chave:

nutracêutico, compostos bioativos, lignanas, vacas de leite, benefícios do leite, redução do risco de doenças

Resumo

Objetivou-se descrever estratégias nutricionais para aumentar as propriedades nutracêuticas do leite, incluindo principalmente estratégias para o aumento nas concentrações de enterolactona (EL) e ácido linoleico conjugado (CLA). Os compostos EL e CLA, ambos produzidos endogenamente a partir de componentes da dieta, são compostos bioativos presente no leite e têm sido apontados como compostos nutracêuticos, capazes de melhorar a saúde humana através da prevenção e tratamento de doenças. Estratégias nutricionais aplicadas na alimentação de vacas leiteiras possibilitam o aumento da concentração destes compostos no leite, tornando possível a produção de leite com maior potencial de beneficiamento a saúde humana. A inclusão de fontes de lignanas vegetais, como por exemplo, o farelo de linhaça e a inclusão de fontes de sacarose na dieta de vacas leiteiras possibilitam aumentar a concentração de EL no leite. Da mesma forma, o fornecimento de fontes ricas de ácidos graxos polinsaturados, como por exemplo, os óleos vegetais, possibilita o aumento da concentração de CLA no leite. A temática da nutrição animal voltada para o aumento das propriedades nutracêuticas do leite, apesar de estar iniciando, apresenta grande perspectiva, e é uma ferramenta valiosa para promoção da associação do leite com benefícios a saúde humana.

Palavras-chave: nutracêutico; compostos bioativos; lignanas; vacas de leite; benefícios do leite; redução do risco de doenças.

 

Nutritional strategies to improve nutraceutical proprieties of milk: improvements on milk enterolactone and conjugated linoleic acid

 

ABSTRACT: This study aimed to describe nutritional strategies to increase milk nutraceutical properties, including mainly strategies to increase the concentrations of enterolactone (EL) and conjugated linoleic acid (CLA). Enterolactone and CLA are endogenously produced from dietary components and have been identified as nutraceutical compounds with the potential of improving human health through the prevention and treatment of diseases. The concentration of these compounds in milk can be modulated through nutritional strategies which enable to produce milk with greater potential for improving human health. The inclusion of vegetable lignans sources, such as flaxseed meal and the inclusion of sucrose sources in the diet of dairy cows increase the concentration of EL in milk. Feeding sources of polyunsaturated fatty acids, such as vegetable oils, results in increased concentration of CLA in milk. The application of animal nutrition to increase nutraceutical properties of milk is a valuable tool for promoting the association of milk with human health benefits and is of great interest.

Keywords: nutraceutical proprieties; bioactive compounds; lignans; dairy cows; health benefits of milk; disease risk reduction.

Referências

ABU-GHAZALEH A. A.; SCHINGOETHE D. J.; HIPPEN A. R. Conjugated linoleic acid and other beneficial fatty acids in milk fatty from cows fed soybean meal, fish meal, or both. Journal of Dairy Science, v. 84, p. 1845-1850, 2001. DOI: https://doi.org/10.3168/jds.S0022-0302 (01)74624-3.

ADLERCREUTZ, H.; MAZUR, W. Phyto-oestrogens and Western diseases. Annals of Internal Medicine, v. 29, p. 95-120, 1997. DOI: https://doi.org/10.3109/07853899709113696

ANVISA. Esclarecimentos sobre as avaliações de segurança e eficácia do Ácido Linoléico Conjugado – CLA. 2007. Disponível em: http://www.anvisa.gov.br/alimentos/informes/23_190407.htm. Acesso em: 02/08/2020.

BAARS, T.; WOHLERS, J.; KUSCHE, D.; JAHREIS, G. Experimental improvement of cowmilk fatty acid composition in organic winter diets. Journal of Science of Food and Agriculture, v. 92, p. 2883-2890, 2012. DOI: https://doi.org/10.1002/jsfa.5525

BAILEY, A. E. Bailey's Industrial oil and fat products. 5 ed. New York: John Wiley, v. 3, 1996. 614p. DOI: https://doi.org/ 10.1002 / 047167849X.

BAINBRIDGE, M. L.; EGOLF, E.; BARLOW, J. W.; ALVEZ, J. P.; ROMAN, J.; KRAFT, J. Milk from cows grazing on cool-season pastures provides an enhanced profile of bioactive fatty acids compared to those grazed on a monoculture of pearl millet. Food Chemistry, v. 217, p. 750-755, 2017. DOI: 10.1016/j.foodchem.2016.08.134

BHARATHAN, M.; SCHINGOETHE, D. J.; HIPPEN, A. R.; KALSCHEUR, K. F.; GIBSON, M. L.; KARGES, K. Conjugated linoleic acid increases in milk from cows fed condensed corn distillers solubles and fish oil. Journal of Dairy Science, v. 91 n. 7, p. 2796-2807, 2008. DOI: 10.3168/jds.2007-0938

BANNI, S.; DAY, B. W.; EVANS, R.W.; FRANCESCO P. C.; LOMBARDI, B. Detection of conjugated diene isomers of linoleic acid in liver lipids of rats fed a choline-devoid diet indicates that the diet does not cause lipoperoxidation. Journal Nutrition Biochemistry, v. 6, p. 281-289, 1995. DOI: https://doi.org/10.1016/0955-2863(95)00049-6.

BAUMAN, D. E., BAUMGARD, L. H., CORL, B. A., GRIINARI, J. M. Biosynthesis of conjugated linoleic acid in ruminants. Proceeding of the American Society of Animal Science, 1999. 15p. Disponível em: https://www.agrireseau.net/bovinsboucherie/documents/CLA.pdf. Accesso em: 09 Nov. 202.

BAUMAN, D. E.; GRIINARI, J. M. Regulation and nutritional manipulation of milk fat: low-fat milk syndrome. Livestock Production Science, v. 70, n. 1-2, p. 15-29, 2001. DOI: https://doi.org/10.1016/S0301-6226(01)00195-6

BRITO, A. F.; PETIT, H. V.; PEREIRA, A. B.; SODER, K. J.; ROSS, S. Interactions of corn meal or molasses with a soybean-sunflower meal mix or flaxseed meal on production, milk fatty acid composition, and nutrient utilization in dairy cows fed grass hay-based diets. Journal of Dairy Science, v. 98, p. 443–457, 2015. DOI: https://doi.org/10.3168/jds.2014-8353.

CAPUANO, E.; RADEMAKER, J.; BIJGAART, V. D.; RUTH, S. M. Verification of fresh grass feeding, pasture grazing and organic farming by FTIR spectroscopy analysis of bovine milk. Food Research International, v. 60, p. 59-65, 2014. DOI: https://doi.org/10.1016/j.foodres.2013.12.024

CHIN, S. F.; LIU, W.; STORKSON, J.M.; HA, Y.L.; PARIZA, M.W. Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. Livestock Production Science, v. 5, p. 185-197, 1992. DOI: https://doi.org/10.1016/0889-1575(92)90037-K.

CHOWDHURY, R.; WARNAKULA, S.; KUNUTSOR, S.; CROWE, F.; WARD, H. A.; JOHNSON, L.; FRANCO, O. H.; BUTTERWORTH, A. S.; FOROUHI, N. G.; THOMPSON, S.G.; KHAW, K. T.; MOZAFFARIAN, D.; DANESH, J.; ANGELANTONIO, E. D. Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. Annals of Internal Medicine, v. 160, n. 6, p. 398-406, 2014. DOI: 10.7326/M13-1788

CLAVEL, T.; BORRMANN, D.; BRAUNE, A.; DORÉ, J.; BLAUT, M. Occurence and activity of human intestinal bacteria involved in the conversion of dietary lignans. Anaerobe, v. 12, p. 140-147, 2006. DOI: https://doi.org/10.1016/j.anaerobe.2005.11.002.

CÔRTES, C.; GAGNON, N.; BENCHAAR, C.; DA SILVA, D.; SANTOS, G.T.; PETIT, H.V. In vitro metabolism of flax lignans by ruminal and faecal microbiota of dairy cows. Journal of Applied Microbiology, v. 105, p. 1585-1594, 2008. DOI: https://doi.org/10.1111/j.1365-2672.2008.03922.x.

COZZOLINO, S. Nutracêuticos: o que significa?. 2012. Disponível em: http://www.abeso.org.br/pdf/revista55/artigo.pdf. Acesso em: 03 ago. 2020.

CRUMB, D. J. Conjugated linoleic acid (CLA)-An Overview Int. International Journal of Applied Research in Natural Products, v. 4, p. 12-18, 2011.

DENMAN, S. E.; MCSWEENEY, C. S.; CORL, B. A.; BAUMGARD, L. H.; DWYER, D.A. The role of delta- 9-desaturase in the production of cis-9, trans-11. Journal of Nutritional Biochemistry, v. 12, n. 11, p .622-630, 2001.

FAO. Food and Agriculture Organization. Milk and dairy products in human nutrition. Rome; 2013. 404p. DOI: https://www.fao.org/3/i3396e/i3396e.pdf

FORD, J. D.; HUANG, K. S.; WANG, H. B.; DAVIN, L. B.; LEWIS, N. G. Biosynthetic pathway to the cancer chemopreventive secoisolariciresinoldiglucoside-hydroxymethyl glutaryl ester-linked lignan oligomers in flax (Linum usitatissimum) seed. Journal of Natural Products, v. 64, p. 1388-1397, 2001. DOI: https://doi.org/10.1021/np010367x

FRANDSON, W. L.; FAIL, A. D. Anatomia e Fisiologia dos Animais de Fazenda. 7 ed. São Paulo: Guanabara Koogan, 2011. p. 359-365.

GAGNON, N.; CÔRTES, C.; PETIT, H V. Weekly excretion of the mammalian lignan enterolactone in milk of dairy cows fed flaxseed meal. Journal of Dairy Research, v. 76, p. 455-458, 2009. DOI: https://doi.org/10.1017/S0022029909990082

GAGNON, N.; CÔRTES, C.; SILVA, D.; KAZAMA, R.; BENCHAAR, C.; SANTOS, G. T.; ZEOULA, L. M.; PETIT, H. V. Ruminal metabolism of flaxseed (Linum usitatissimum) lignans to the mammalian lignan enterolactone and its concentration in ruminal fluid, plasma, urine and milk of dairy cows. British Journal of Nutrition, v. 102, p. 1015-1023, 2009. DOI: https://doi.org/10.1017/S0007114509344104

GASTELEN, S.V.; ANTUNES-FERNANDES, E. C.; HETTINGA, K. A.; KLOP, G.; ALFERINK, S. J.; DIJKSTRA, J. Enteric methane production, rumen volatile fatty acid concentrations, and milk fatty acid composition in lactating Holstein-Friesian cows fed grass silage- or corn silage-based diets. Journal of Dairy Science, v. 98, n. 3, p. 1-13, 2015. DOI: https://doi.org/10.3168/jds.2014-8552

GERMAN, J. B.; GIBSON, R. A.; KRAUSS, R. M.; NESTEL, P.; LAMARCHE, B.; VAN STAVEREN, W.M.; STEIJNS, J.M.; DE GROOT, L. C.; LOCK, A. L.; DESTAILLATS, F. A reappraisal of the impact of dairy foods and milk fat on cardiovascular disease risk. European Journal of Nutrition, v. 48, n. 4, p. 191-203, 2009. DOI: 10.1007/s00394-009-0002-5

GHEDINI, C. P.; BRITO, A. F.; REIS, S. F.; MOURA, D. C; OLIVEIRA, A. S.; SANTANA, R. A. V.; PEREIRA, A. B. D. Liquid Molasses Decreases Production Linearly and Changes Enterolactone Concentrations as a Corn Meal Substitute in Organic Dairy Cows Fed Flaxseed Meal. In: Organic Agriculture Research Symposium Pacific Grove, CA. Proceedings… January 20, 2016. 8p. Disponível em: https://www.eorganic.info/sites/eorganic.info/files/u27/4.6-Ghedini&al-2016-Replacing_Corn_Meal-OARS_Proceedings-Final.pdf

GOMES, A. M.; PINTADO, M. E.; MALCATA, X. Conhecer a importância do leite na nutrição humana. Leite + I + D + T, Porto, v. 2, n. 7, p. 2-4, 2008.

GRIINARI, J. M.; BAUMAN, D. E. Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In: YURAWECZ, M. P.; MOSSOBA, M. M.; KRAMER, J. K. G.; PARIZA, M. W.; NELSON, G. J. (Eds.) Advances in Conjugated Linoleic Acid Research. Champaign, IL: AOCS Press, v. 1, 1999. p.180-200.

HA, Y. L.; GRIMM, N. K.; PARIZA, M. Anticarcionogens from fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis, v. 8, n. 9, p. 1881-1887, 1987.

HARGREAVES, W. A.; PARIZA, M. W. Purification and mass spectral characterization of bacterial mutagens from commercial beef extract. Cancer Research, v. 43, n. 4, p. 1467-1472, 1983.

HOLANDA, M. A. C.; HOLANDA, M. C. R.; JUNIOR, A. F. M. Suplementação dietética de lipídios na concentração de ácido linoléico conjugado na gordura do leite. Acta Veterinária Brasílica, v. 5, n. 3, p. 221-229, 2011.

HOMAN, P.; WATTIAUX, M. A. Milk and milking. In: Guia Técnico da Pecuária Leiteira. Madinson, EUA: Inst. Babcok, 1996. 128p.

HUTH, P. J.; PARK, K. M. Influence of dairy product and milk fat consumption on cardiovascular disease risk: a review of the evidence. Advances in Nutrition, v. 3, p. 266-285, 2012. DOI: 10.3945/an.112.002030

IP, C.; SINGH, M.; THOMPASON, H. J.; SCIMECA, J. A. Conjugated linoleic acid suppresses mammary carcinogenesis and proliferative activity of the mammary gland in the rat. Cancer Research, v. 54, p. 1212-1215, 1994.

JENSEN, R.G. The composition of bovine milk lipids: January 1995 to December 2000. Journal Dairy Science, v. 85, n. 2., p. 295-350, 2002. DOI: 10.3168/jds.S0022-0302(02)74079-4

JIN, J.; HATTORI, M. A new mammalian lignin precursor, asarinin. Food Chemistry, v. 124, p. 895-899, 2011. DOI: 10.1016/j.foodchem.2010.07.015

KAY, J. K.; ROCHE, J.R.; KOLVER, E. S.; THOMSON, N. A.; BAUMGARD, L. H. Comparison between feeding systems (pasture and TMR) and the effect of vitamin E supplementation on plasma and milk fatty acid profiles in dairy cows. Journal of Dairy Research, v. 72, n. 3, p. 322-332, 2005. DOI: https://doi.org/10.1017/S002202990500094

KELLY, M. L.; BERRY, J. R.; DAWER D. A.; GRIINARI, J. M.; CHOUINARD, P. Y.; VAN AMBURGH, M. E.; BAUMAN, D. E. Dietary fatty acid sources affected conjugated linoleic acid concentrations in milk from lactating dairy cows. Journal Dairy Science, v. 80, p. 2104-2114, 1998. DOI: https://doi.org/10.1093/jn/128.5.881

KELLY, M. L.; BAUMAN, D. E. Conjugated linoleic acid: a potentanticarcinogen found in milk fat. IN: Cornell Nutrition Conference, 58. Proceedings… Ithaca NY, p.6 8-74, 1996.

KEPLER, C. R.; HIRONS, K. P.; McNEILL, J.; TOVE, S. Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. Journal of Biological Chemistry, v. 241, n. 6, p. 1350-1354, 1966.

KRATZ, M.; BAARS, T.; GUYENET, S. The relationship between high-fat dairy consumption and obesity, cardiovascular, and metabolic disease. European Journal of Nutrition, v.52, n.1, p.1-24, 2013. DOI: 10.1007/s00394-012-0418-1

KUROKAWA, Y.; SHIBATA, H.; TATENO, S.; KANDA, S.; TAKAURA, K.; ISHIDA, S.; ITABASHI, H. Rumen fermentation, milk production and conjugated linoleic acid in the milk of cows fed high fiber diets added with dried distillers grains with soluble. Animal Science Journal, v. 84, p. 106-112, 2013. DOI: 10.1111/j.1740-0929.2012. 01052.x

LAHLOU, M. N.; KANNEGANTI, R.; MASSINGILL, L. J.; BRODERICK, G. A.; PARK, Y.; PARIZA, M. W.; FERGUSON, J.D.; WU, Z. Grazing increases the concentration of CLA in dairy cow milk. Animal, v. 8, n. 7, n. 7, p. 1191-1200, 2014. DOI: https://doi.org/10.1017/S1751731114000998

LANDETE, J. M. Plant and mammalian lignans: a review of source, intake metabolism, intestinal bacteria and health. Food Research International, v. 46, p. 410-424, 2012. DOI: https://doi.org/10.1016/j.foodres.2011.12.023

LIMA, L. S.; PALIN, M. F.; SANTOS, G. T.; BENCHAAR, C.; PETIT, H. V. Dietary flax meal and abomasal infusion of flax oil onmicrobial_-glucuronidase activity and concentration ofenterolactone in ruminal fluid, plasma, urine and milk of dairy cows. Animal Feed Science and Technology, v. 215, p. 85-91, 2016. DOI: 10.1016/j.anifeedsci.2016.03.006

LIU, Z.; SAARINEN, N. M.; THOMPSON, L. U. Sesamin is one of the major precursors of mammalian lignans in sesame seed (Sesamum indicum) as observed in vitro and in rats. The Journal of Nutrition, v. 136, p. 906-912, 2006. DOI: https://doi.org/10.1093/jn/136.4.906

LOCK, A. L.; GARNSWORTHY, P. C. Seasonal variation in milk newly recognized class of anticarcinogens. Journal of Food Composition and Analysis, v. 5, p. 185-197, 2003.

LUCATTO, J. N.; MENDONÇA, S. N. T. G.; DRUNKLER, D. A. Ácido linoleico conjugado: estrutura química, efeitos sobre a saúde humana e análise em lácteos. Revista do Instituto de Laticínios Cândido Tostes, v. 69, n. 3, p. 199-211, 2014.

MACHADO, F. M. S. Estratégias de concorrência da indústria alimentícia e seus desdobramentos na dimensão nutricional. 2003. 213f. Tese (Doutorado em Nutrição Humana Aplicada) - Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 2003.

MAIA, F. J.; BRANCO, A. F.; MOURO, G. F.; CONEGLIAN, S. M.; SANTOS, G. T.; MINELLA, T. F.; GUIMARÃES, K. C. Inclusão de fontes de óleo na dieta de cabras em lactação: produção, composição e perfil dos ácidos graxos do leite. Revista Brasileira de Zootecnia, v. 35, n. 4, p. 1504-1513, 2006.

MAISUTHISAKUL, P.; SUTTAJIT, M.; PONGSAWATMANIT, R. Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chemistry, London, v. 100, n. 4, p. 1409-1418, 2007. DOI: https://doi.org/10.1016/j.foodchem.2005.11.032

MARTIN, S. A.; JENKINS, T. C. Factors affecting conjugated linoleic acid trans-C18:1 fatty acid production by mixed ruminal bacteria. Journal of Animal Science, v. 80, n. 12, p. 3347- 3352, 2002.

MARTINS, S.V.; LOPES, P. A.; ALFAIA, C. M.; RIBEIRO, V. S.; GUERREIRO, T. V.; FONTES, C. M. G. A.; CASTRO, M. F.; SOVERAL, G.; PRATES, J. A. M. Contents of conjugated linoleic acid isomers in ruminant-derived foods and estimation of their contribution to daily intake in Portugal. British Journal of Nutrition, v. 98, n. 6, p. 1206-1213, 2007. DOI: https://doi.org/10.1017/S0007114507781448

MASSEY, L. K. Dairy food consumption blood pressure and stroke. The Journal of Nutrition, v. 131, n. 7, p. 1875-1878, 2001. DOI: 10.1093/jn/131.7.1875

MCLEOD, R. S.; LEBLANC, A. M.; LANGILLE, M. A.; MITCHELL, P. L.; CURRIE, D. L. Conjugated linoleic acids, atherosclerosis, and hepatic very-low-density lipoprotein metabolism. American Journal of Clinical Nutrition, v. 79, p. 1169S-74S, 2004. DOI: 10.1093/ajcn/79.6.1169S

MICINSKIA, J.; KOWALSKI, I. M.; ZWIERZCHOWSKI, G.; SZAREK, J.; PIEROZYNSKI, B.; ZABLOCKA, E. Characteristics of cow's milk proteins including allergenic properties and methods for its reduction. Polish Annals of Medicine, v. 20, n. 1, p. 69-76, 2013. DOI: https://doi.org/10.1016/j.poamed.2013.07.006

MORAES, F. P.; COLLA, L. M. Alimentos funcionais e nutracêuticos: definições, legislação e benefícios à saúde. Revista Eletrônica de Farmácia, v. 3, n. 2, p.109-122, 2006.

MUNIZ, L. C.; MADRUGA, S. W.; ARAÚJO, C. L. Consumo de leite e derivados entre adultos e idosos no Sul do Brasil: um estudo de base populacional. Ciência e Saúde Coletiva, v. 18, n. 12, p. 315-3522, 2013. DOI: https://doi.org/10.1590/S1413-81232013001200008

MUTSVANGWA, T.; HOBIN, M.R.; GOZHO, G. N. Effects of method of barley grain processing and source of supplemental dietary fat on duodenal nutrient flows, milk fatty acid profiles, and microbial protein synthesis in dairy cows. Journal Dairy Science, v. 95, p. 5961-5977, 2012. DOI: 10.3168/jds.2012-5491

NRC_National Research Council. Nutrient requeriments of dairy cattle. 1.ed. Washington, D.C.: National Academy, 2001. 405p.

ORDÓÑEZ, J. A.; RODRÍGUEZ, M. I. C.; ÁLVAREZ, L. F.; SANZ, M. L. G. MINGUILLÓN, G. D. G. F.; PERALES, L. H.; CORTECERO, M. D. S. Tecnologia de alimentos: alimentos de origem animal. Porto Alegre: Artmed, 2005. 280p.

PALMQUIST, D. L.; MATTOS, W. R. S. Metabolismo de lipídeos. In: BERCHIELI, T. T.; PIRES, A. V.; OLIVEIRA, S. G. (Eds.). Nutrição de ruminantes. 2 ed. Jaboticabal: Funep, 2011. p. 299-322.

PARIZA, M. W.; ASHOOR, S. H.; CHU, F.S.; LUND, D.B. Effects of temperature and time on mutagen formation in pan-fried hamburger. Cancer Letters, v. 7, n. 2-3, p. 63-69, 1979. DOI: https://doi.org/10.1016/S0304-3835(79)80097-X

PARIZA, M. W.; HARGREAVES, W. A. A beef-derived mutagenesis modular inhibits initiation of mouse epidermal tumors by 7,12-dimethylbenz(a) anthracene. Carcinogenesis, v. 6, n. 3, p. 591-593, 1985. DOI: 10.1093/carcin/6.4.591

PARODI, P.W. Cows’ milk fat components as potential anticarcinogenic agent. Journal Nutrition, v. 127, n. 6, p. 1055-1060, 1997. DOI: 10.1093/jn/127.6.1055

PATTERSON, E.; LARSSON, S. C.; WOLK, A.; ÅKESSON, A. Association between dairy food consumption and risk of myocardial infarction in women differs by type of dairy food. The Journal of Nutrition, v. 143, n. 1, p. 74-9, 2013. DOI: 10.3945/jn.112.166330

PEREIRA, M. A.; JACOBS Jr, D. R.; VAN HORN, L.; SLATTERY, M. L. KARTASHOV, A. I.; LUDWIG, D. S. Dairy consumption, obesity, and the insulin resistance syndrome in young adults: the CARDIA study. JAMA, v. 287, n. 16, p. 2081-2089, 2002. DOI: 10.1001/jama.287.16.2081

PETIT, H. V.; GAGNON, N. Concentration of the mammalian lignans enterolactone and enterodiol in milk of cows fed diets containing different concentrations of whole flaxseed. Animal, v. 3, p. 1428-1435, 2009. DOI: 10.1017/S1751731109990346

PETIT, H. V.; GAGNON, N. Milk concentration of the mammalian lignans enterolactone and enterodiol, milk production,and whole tract digestibility of dairy cows fed diets containing different concentrations of flaxseed meal. Animal Feed Science and Technology, v.152, p.103-111, 2009.

PETIT, H. V.; GAGNON, N. Production, performance and milk composition of dairy cows fed different concentrations of flax hulls. Animal Feed Science and Technology, v.169, p.46-52, 2011. DOI: 10.3168/jds.2006-573

PETIT, H. V.; GAGNON, N.; MIR, P. S.; CAO, R.; CUI, S. Milk concentration of the mammalian lignan enterolactone, milk production, milk fatty acid profile, and digestibility in dairy cows fed diets containing whole flaxseed or flaxseed meal. Journal of Dairy Research, v. 76, p. 257-264, 2009. DOI: 10.1017/S0022029909003999

PHILIPPI, S. T.; LATTERZA, A. R.; CRUZ, A. T. R.; RIBEIRO, L. C. Pirâmide alimentar adaptada: guia para escolha dos alimentos. Revista de Nutrição, Campinas, v. 12, n. 1, p. 65-80, 1999. DOI: https://doi.org/10.1590/S1415-52731999000100006

RAFFAELLI, B.; HOIKKALA, A.; LEPPÄLÄ, E.; WÄHÄLÄ, K. Enterolignans. Journal of Chromatography B, v. 777, p. 29-43, 2002.

REECE, W. O. Fisiologia de animais domésticos. 1 ed. São Paulo: Edit. Roca, 1996. p. 313-325.

RENNA, M.; COLLOMB, M.; MUNGER, A.; WYSS, U. Influence of low-level supplementation of grazing dairy cows with cereals or sugar beet pulp on the concentrations of CLA isomers in milk. Journal of the Science of Food and Agriculture, v. 90, p.1256–1267, 2010. DOI: https://doi.org/10.1002/jsfa.3968

RIBEIRO, C. G.; LOPES, F. C. F.; GAMA, M. A. S.; MORENZ, M. J. F.; RODRIGUEZ, N. M. Desempenho produtivo e perfil de ácidos graxos do leite de vacas que receberam níveis crescentes de óleo de girassol em dietas à base de capim-elefante. Arquivo Brasileiro de Medicina Veterinária, v. 66, n. 5, p. 1513-1521, 2014. DOI: https://doi.org/10.1590/1678-6886

SAARINEN, N. M.; SMEDS, A.; MÄKELÄ, S. I.; ÄMMÄLÄ, J.; HAKALA, K.; PIHLAVA, J. M.; RYHÄNEN, E. L.; SJÖHOLM, R.; SANTTI, R. Structural determinants of plant lignans for the formation of enterolactone in vivo. Journal of Chromatography B, v. 777, n. 1-2, p. 311-319, 2002. DOI: 10.1016/s1570-0232(02)00339-2

SAARINEN, N. M.; THOMPSON, L. U. Prolonged administration of secoisolariciresinol diglycoside increases lignan excretion and alters lignan tissuedistribution in adult male and female rats. British Journal of Nutrition, v. 104, p. 833-841, 2010. DOI: 10.1017/S0007114510001194

SANTOS, G. T.; SILVA-KAZAMA, D. C.; GRANZOTTO, F. Modulação da produção, composição e estabilidade oxidativa do leite. In: MARCONDES, M.I.; VELOSO, C.M.; GUIMARÃES, J. D. (Eds). III Simpósio Nacional de Bovinocultura Leiteira e I Simpósio Internacional de Bovinocultura Leiteira – SIMLEITE. Anais... Viçosa-MG: Suprema Gráfica e Editora LTDA, 2011. p.151-174.

SANTOS, F. L.; SILVA, M. T. C.; LANA, R. P.; BRANDÃO, S. C. C.; VARGAS, L. H.; ABREU, L.R. Efeito da Suplementação de Lipídios na Ração sobre a Produção de Ácido Linoléico Conjugado (CLA) e a Composição da Gordura do Leite de Vacas. Revista Brasileira de Zootecnia, v. 3, n. 6, p. 1931-1938, 2001.

SETCHELL, K. D. R.; LAWSON, A. M.; MITCHELL, F. L.; ADLERCREUTZ, H.; KIRK, D. N.; AXELSON, M. Lignans in man and in animal species. Nature, v. 287, p. 740-742, 1980.

SINGH, V. P.; SACHAN, N. Nutraceutical Properties of Milk and Milk Products: A Review. American Journal of Food Technology, v. 6, n. 10, p. 864-869, 2011. DOI: 10.3923/ajft.2011.864.869

SHULTZ, T. D.; CHEW, B. P.; SEAMAN, W. R.; LUEDECKE, L. O. Inhibitory effect of conjugated dienoic derivatives of linoleic acid and b-carotene on the in vitro growth ofhuman cancer cells. Cancer Lell, v. 63, n. 2, p. 125-133, 1992. DOI: 10.1016/0304-3835(92)90062-z

SIMIC, M. G.; JAVANOVIC, S. V.; HO, C. T.; OSAWA, T.; HUANG, T. M.; ROSEN, R. T. Inactivation of oxygen radicals by dietary phenolic compounds in anticarcinogenesis. Food Phytochemicals for Cancer Prevention, n. 547, p. 20-32, 1994. DOI: 10.1002/chin.199415325

SOUZA, S. M. 2004. Desempenho e perfil de ácido graxos do leite de vacas alimentadas com óleo de girassol em dietas a base de cana-de-açúcar. 87 f. Tese (Doutorado em zootecnia) – Universidade Federal de Viçosa, Viçosa, 2004.

STOPPER, H.; SCHMITT, E.; KOBRAS, K. Genotoxicity of phytoestrogens. Mutation Research, v. 574, p. 139-155, 2005. DOI: 10.1016/j.mrfmmm.2005.01.029

TANMAHASAMUT, P.; LIU, J.; HENDRY, L. B.; SIDELL, N. Conjugated linoleic acid blocks estrogen signaling in human breast cancer cells. American Society for Nutritional Sciences, v. 22, n. 3, p. 3160- 3166, 2004. DOI: 10.1093/jn/134.3.674

THOMPSON, L. Flaxseed, lignans and cancer. 2 ed. Champaign, IL, USA: AOCS Press, 2004. p.194-222.

THOMPSON, L. U.; ROBB, P.; SERRAINO, M.; CHEUNG, F. Mammalian lignan production from various foods. Nutrition and Cancer, v. 16, p. 43-52, 1991. DOI: 10.1080/01635589109514139

TOURE, A.; XU, X. M. Flaxseed lignans: source, biosynthesis, metabolism, antioxidant activity, bio-Active components, and health benefits. Comprehensive Reviews in Food Science and Food Safety, v. 9, p. 261-269, 2010. DOI: https://doi.org/10.1111/j.1541-4337.2009.00105.x

TOMBINI, H.; DALLACOSTA, M. C.; BLEIL, R. A. T.; ROMAN, J. A. Consumo de leite de vaca e derivados entre agricultores da região oeste do Paraná. Alimentos e Nutrição, v. 23, n. 2, p. 267-274, 2012.

TSIPLAKOU, E. MOUNTZOURIS, K. C.; ZERVAS, G. Concentration of conjugated linoleic acid in grazing sheep and goat milk fat. Livestock Science, v. 103, n. 1-2, p. 74-84, 2006. DOI: https://doi.org/10.1016/j.livsci.2006.01.010

US Department of Agriculture (USDA) and US Department of Health and Human Services. Dietary Guidelines for Americans, 2010. 7th Edition, Washington, DC: U.S. Government Printing Office, December; 2010. Disponível em: http://health.gov/dietaryguidelines/2010/. Acesso em: 19/12/2020.

ZHOU, W.; WANG, G.; HAN, Z.; YAO, W.; ZHU, W. Metabolism of flaxseed lignans in the rumen and its impact on ruminal metabolism and flora. Animal Feed Science and Technology, v. 150, p. 18-26, 2009. DOI: 10.1016/j.anifeedsci.2008.07.006

ZU, I. L.-X.; SCHUT, I. L. A. J. Inibition of 2-amino-3-methylimidzol 4,5-f quinoline-DNA adduct formation in CDF1 mice by heat-altered derivatives of linoleic acid. Food Chemical Toxicology, v. 30, p. 9-16, 1992. DOI: 10.1016/0278-6915(92)90131-4

Downloads

Publicado

2021-11-17 — Atualizado em 2023-10-05

Versões

Como Citar

Silva, E. P., Paludo Ghedini, C. ., Moreno Ferro, M. ., Marques Freire, J. ., Gomes de Souza, J., Viana Costa, R. ., & Caroline De Moura, D. . (2023). ESTRATÉGIAS NUTRICIONAIS PARA AUMENTAR AS PROPRIEDADES NUTRACÊUTICAS DO LEITE: CONCENTRAÇÕES DE ENTEROLACTONA E ÁCIDO LINOLEICO CONJUGADO. Nativa, 9(4), 481–494. https://doi.org/10.31413/nativa.v9i4.11988 (Original work published 17º de novembro de 2021)

Edição

Seção

Zootecnia / Animal Husbandry