milk nutraceutical proprieties; bioactive compounds; lignans; disease risk reduction; dairy cattle production


O farelo de linhaça na dieta de vacas leiteiras como estratégia para aumentar a concentração de enterolactona no leite: revisão de literatura


RESUMO: A linhaça (Linum usitatissimum) é a principal fonte da lignana vegetal secoisolariciresinol diglucosídeo (SDG). Em mamíferos, incluindo bovinos, SDG é precursor para a síntese das lignanas de mamíferos enterolactona (EL) e enterodiol (ED) pelos microrganismos gastrointestinais. Existe um grande interesse em promover o aumento da ingestão de lignanas na dieta humana devido aos potenciais benefícios da EL a saúde, incluindo principalmente a prevenção de doenças cardiovasculares, hipercolesterolemia, câncer de mama e de próstata e osteoporose. Assim, objetivou-se fazer uma revisão de literatura sobre estratégias de alimentação capazes de melhorar a concentração de enterolactona no leite, melhorando assim a atividade biológica e os benefícios do leite para a saúde humana.fontes ricas em lignanas vegetais, como o farelo de linhaça (FM), aumenta a concentração de EL no leite. Além disso, estudos têm demonstrado que mudanças no perfil de carboidratos de dietas à base de FM fornecidas a vacas leiteiras alteram a concentração de EL do leite. A aplicação da nutrição animal como ferramenta para aumentar as propriedades nutracêuticas do leite (ex. aumentar a concentração de EL) é uma estratégia valiosa para promover a associação do leite com benefícios à saúde humana e é de grande interesse na sociedade moderna.

Palavras-chave: propriedades nutracêuticas do leite; compostos bioativos; lignanas; redução do risco de doenças; bovinocultura leiteira.


ABSTRACT: Flaxseed (Linum usitatissimum) is the richest source of the plant lignan secoisolariciresinol diglucoside (SDG). In mammals, including bovine, SDG is converted to the mammalian lignans enterolactone (EL) and enterodiol (ED) by the action of gastrointestinal microbes. There is a great deal of interest in promoting increased intakes of lignans in humans’ diet due to the potential health benefits of mammalian lignans, especially in the prevention of cardiovascular diseases, hypercholesterolaemia, breast and prostate cancers, and osteoporosis. Consumption of milk and dairy products enriched in EL could be an excellent strategy to increase the intake of lignans by humans. This literature review will focus on presenting feeding strategies capable to improve milk enterolactone concentration. Research has demonstrated the potential of flaxseed meal (FM) feeding to dairy cows as a strategy to improve milk EL concentration, therefore enhancing milk nutraceutical proprieties. A considerable number of studies have demonstrated that feeding vegetable lignans-rich sources, such as FM, to dairy cows improves EL in milk. Additionally, it has been reported that changes in the carbohydrate profile of FM-based diets fed to dairy cows can alter the output of milk EL. The application of animal nutrition as a tool to increase nutraceutical properties of milk (i.e. increased EL concentration) is a valuable strategy for promoting the association of milk with humans’ health benefits and is of great interest in contemporary society.

Keywords: milk nutraceutical proprieties; bioactive compounds; lignans; disease risk reduction; dairy cattle production.



ADLERCREUTZ, H. Phyto-oestrogens and cancer. The Lancet Oncology, v. 3, p. 364-73. 2002. DOI: 10.1016/s1470-2045(02)00777-5.

ADLERCREUTZ, H.; BANNWART, C.; WAHALA, K.; MAKELA, T. G.; BRUNOW, T. HASE. Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens. The Journal Steroid Biochemistry and Molecular Biology, v. 44, p. 147-153, 1993. DOI: 10.1016/0960-0760(93)90022-o.

ADLERCREUTZ, H.; MAZUR, W. Phyto-oestrogens and Western diseases. Annals of Internal Medicine, v. 29, p. 95-120, 1997. DOI: 10.3109/07853899709113696.

ADOLPHE, J. L.; WHITING S. J.; JUURLINK, B. H. J.; THORPE L. U.; ALCORN, J. Health effects with consumption of the flax lignan secoisolariciresinol diglucoside. British Journal of Nutrition, v. 103, p. 929-938, 2010. DOI: https://doi.org/10.1017/S0007114509992753.

AKAO, T. Competition in the metabolism of glycyrrhizin with glycyrrhetic acid mono- glucuronide by mixed Eubacterium sp. GLH and Ruminococcus sp. Biological and Pharmaceutical Bulletin, v. 23, p. 149-154, 2020. DOI: 10.1248/bpb.23.149.

BRITO, A. F.; PETIT, H. V.; PEREIRA, A. B. D.; SODER, K. J., ROSS, S. Interactions of corn meal or molasses with a soybean-sunflower meal mix or flaxseed meal on production, milk fatty acid composition, and nutrient utilization in dairy cows fed grass hay-based diets. Journal of Dairy Science, v. 98, p. 443-457, 2015. DOI: 10.3168/jds.2014-8353.

BUCK, K.; ZAINEDDIN, A. K.; VRIELING, A.; LINSEISEN, J.; CHANG-CLAUDE, J. Meta-analyses of lignans and enterolignans in relation to breast cancer risk. The American Journal of clinical Nutrition, v. 92, p. 141-153, 2010. DOI: https://doi.org/10.3945/ajcn.2009.28573

CAROPRESE, M.; MARZANO, A.; MARINO, R.; GLIATTA, G.; MUSCIO, A.; SEVI, A. Flaxseed supplementation improves fatty acid profile of cow milk. Journal of Dairy Science, v. 93, p. 2580-2588, 2010. DOI: 10.3168/jds.2008-2003.

CHEN J.; LIU, X.; SHI, Y. Determination of the lignan secoisolariciresinol diglucoside from flaxseed (Linum usitatissimum) by HPLC. Jounal of Liquid Chromatography & Related Technologies, v. 30, p. 533-544, 2007. DOI: https://doi.org/10.1080/10826070601093853.

CHUNG, M.; LEI, B.; LI-CHAN, E. Isolation and structural characterization of the major protein fraction from Nor Man flaxseed (Linum usitatissimum L.). Food Chemistry, v. 90, p. 271-279, 2005. DOI: https://doi.org/10.1016/j.foodchem.2003.07.038.

CLAVEL, T.; BORRMANN, D.; BRAUNE, A.; DORÉ J.; BLAUT, M. 2006. Occurence and activity of human intestinal bacteria involved in the conversion of dietary lignans. Anaerobe, v. 12, p. 140-147, 2006. DOI: 10.1016/j.anaerobe.2005.11.002.

CÔRTES, C.; PALIN, M-F.; GAGNON, N.; BENCHAAR, C.; LACASSE, P.; PETIT, H. V. Mammary gene expression and activity of antioxidant enzymes and concentration of the mammalian lignan enterolactone in milk and plasma of dairy cows fed flax lignans and infused with flax oil in the abomasum. British Journal of Nutrition, v. 108, p. 1390-1398, 2012. DOI: 10.1017/S0007114511006829.

CÔRTES C.; GAGNON, N.; BENCHAAR, C.; SILVA, D.; SANTOS, G. T. D.; PETIT, H. V. In vitro metabolism of flax lignans by ruminal and faecal microbiota of dairy cows. Journal of Applied Microbioly, v. 105, p. 1585-1594, 2008 DOI: 10.1111/j.1365-2672.2008.03922.

DAUN, J. K.; BARTHET, V. J.; CHORNICK, T. L.; DUGUID, S. D. Structure, composition, and variety development of flaxseed. In: Thompson LU, Cunnane SC (eds) Flaxseed in human nutrition. AOCS, Champaign, 2003, p.1-40. DOI: 10.1201/9781439831915.ch1.

GAGNON, N.; CÔRTES, C.; DA SILVA, D.; KAZAMA, R.; BENCHAAR, C.; DOS SANTOS G.; ZEOULA, L.; PETIT, H. V. Ruminal metabolism of flaxseed (Linum usitatissimum) lignans to the mammalian lignan enterolactone and its concentration in ruminal fluid, plasma, urine and milk of dairy cows. British Journal of Nutrition, v. 102, p. 1015-1023, 2009a. DOI: 10.1017/S0007114509344104.

GAGNON, N.; CÔRTES C.; PETIT, H. V. Weekly excretion of the mammalian lignan enterolactone in milk of dairy cows fed flaxseed meal. Journal of Dairy Research, v. 76, p. 455-458, 2009b. DOI: 10.1017/S0022029909990082.

GHEDINI, C. P. Improving the Understanding of different Diets on the Concentration and Metabolism of the Mammalian Lignan Enterolactone in Dairy Cattle. Ph.D. Thesis, University of New Hampshire, Durham, NH, USA, 2017.

GHEDINI, C. P.; MOURA, D. C.; SANTANA, R. A. V.; OLIVEIRA, A. S.; BRITO, A. F. Replacing ground corn with incremental amounts of liquid molasses does not change milk enterolactone but decreases production in dairy cows fed flaxseed meal. Journal of Dairy Science, v. 101, p. 2096-2109, 2018. DOI: 10.3168/jds.2017-13689.

GLASSER, F.; FERLAY, A.; CHILLIARD, Y. Oilseed lipid supplements and fatty acid composition of cow milk: A meta-analysis. Journal of Dairy Science, v. 91, p. 4687-4703, 2008. DOI: 10.3168/jds.2008-0987

HÖGGER, P. Nutrition-derived bioactive metabolites produced by gut microbiota and their potential impact on human health. Nutrition and Medicine, v. 1, p. 1-32, 2013.

IMRAN, M.; AHMAD, N.; ANJUM F. M.; KHAN, M. K.; MUSHTAQ Z.; NADEEM, M.; HUSSAIN S. Potential protective properties of flax lignan secoisolariciresinol diglucoside. Nutrition Journal, v. 14, p. 71-77, 2015. DOI: 10.1186/s12937-015-0059-3.

JENAB, M.; THOMPSON, L. U. The influence of flaxseed and lignans on colon carcinogenesis and b-glucuronidase activity. Carcinogenesis, v. 17, p. 1343-1348, 1996. DOI: https://doi.org/10.1093/carcin/17.6.1343

JOHNSSON, P.; KAMAL-ELDIN, A.; LUNDGREN L. N.; AAMAN, P. HPLC method for analysis of secoisolariciresinol diglucoside in flaxseeds. Journal of Agricultura and Food Chemistry, v. 48, p. 5216-521, 2000. DOI: 10.1021/jf0005871.

KAJLA, P.; SHARMA, A.; SOOD, S. D. Flaxseed—a potential functional food source. Journal Food Science Tecnology, v. 52, p. 1857-1871, 2015. DOI: 10.1007/s13197-014-1293-y.

LANDETE, J. M. Plant and mammalian lignans: a review of source, intake metabolism, intestinal bacteria and health. Food Research International, v. 46, p. 410-424, 2012. DOI: https://doi.org/10.1016/j.foodres.2011.12.023.

LI, X. Z.; PARK, K. B.; SHIN, J. S.; CHOI, S. H.; YAN C. G. Effects of dietary linseed oil and propionate precursors on ruminal microbial community, composition, and diversity in Yanbian Yellow cattle. PLoS ONE, v. 29, n. 5, e0126473, 2015. DOI: 10.1371/journal.pone.0126473.

LIMA, L. S.; PALINB, M. F.; SANTOS, G. T.; BENCHAAR, A. C.; PETIT, H. V. Dietary flax meal and abomasal infusion of flax oil on microbial -glucuronidase activity and concentration of enterolactone in ruminal fluid, plasma, urine and milk of dairy cows. Animal Feed Science Technology, v. 215, p. 85-91, 2016.

LIU, Z.; SAARINEN, N. M.; THOMPSON, L. U. Sesamin is one of the major precursors of mammalian lignans in sesame seed (Sesamum indicum) as observed in vitro and in rats. Journal of Nutrition, v. 136, p. 906-912, 2006. DOI: 10.1093/jn/136.4.906

MAIA, M. R. G.; CHAUDHARY, L. C.; FIGUERES, L.; WALLACE, R. J. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek, v. 91, p. 303-314, 2007. DOI: 10.1007/s10482-006-9118-2.

MORRIS, D. H. 2007. Flax a health and nutrition primer. Disponível em: <https://flaxcouncil.ca/resources/nutrition/technical-nutrition-information/flax-a-health-and-nutrition-primer/> Acesso em: 12/12/2020

MUELLER, K.; EISNER, P.; YOSHIE-STARK, Y.; R., NAKADA, KIRCHOFF, E. Functional properties and chemical composition of fractionated brown and yellow linseed meal (Linum usitatissimum L.). Journal of Food Engineering, v. 98, p. 453-460, 2010. DOI: https://doi.org/10.1016/j.jfoodeng.2010.01.028.

MURKIES, A. L.; WILCOX, G.; DAVIS, S. R. Phytoestrogens. The Journal of Clinical Endocrinology and Metabolism, v.b83, p. 297-303, 1998. DOI: https://doi.org/10.1210/jcem.83.2.4577.

MUSTAFA, A. F.; CHOUINARD, P. Y.; CHRISTENSEN, D. A. Effects of feeding micronized flaxseed on yield and composition of milk from Holstein cows. Journal of the Science of Food and Agriculture, v. 83, p. 920-926, 2003. DOI: https://doi.org/10.1002/jsfa.1430.

PETIT, H. V. Review: Feed intake, milk production and milk composition of dairy cows fed flaxseed. Canadian Journal of Animal Science, v. 9, p. 115-127, 2011. DOI: https://doi.org/10.4141/CJAS09040.

PETIT, H. V.; GAGNON, N. Milk concentrations of the mammalian lignans enterolactone and enterodiol, milk production, and whole tract digestibility of dairy cows fed diets containing different concentrations of flaxseed meal. Animal Feed Science Technology, v. 152, p.103-111, 2009. DOI: https://doi.org/10.1016/j.anifeedsci.2009.04.004.

PETIT, H. V.; GAGNON, N. Production performance and milk composition of dairy cows fed different concentrations of flax hulls. Animal Feed Science Technology, v. 169, p. 46-52, 2011. DOI: https://doi.org/10.1016/j.anifeedsci.2011.05.008.

PETIT, H. V.; CÔRTES, C.; DA SILVA, D.; KAZAMA, R.; GAGNON, N.; C. BENCHAAR, G.; DOS SANTOS, T.; ZEOULA L. M. The interaction of monensin and flaxseed hulls on ruminal and milk concentration of the mammalian lignan enterolactone in late-lactating dairy cows. Journal of Dairy Research, v. 76, p. 475-482, 2009a. DOI: https://doi.org/10.1017/S0022029909990215.

PETIT, H. V.; GAGNON, N.; MIR, P. S.; CAO, R.; CUI, S. Milk concentration of the mammalian lignan enterolactone, milk production, milk fatty acid profile, and digestibility in dairy cows fed diets containing whole flaxseed or flaxseed meal. Journal of Dairy Research, v. 76, p. 257–264, 2009b. DOI: 10.1017/S0022029909003999.

PRASAD, K. Antioxidant activity of secoisolariciresinol diglucosidase-derived metabolites, secoisolariciresinol, enterodiol, and enterolactone. Journal of Angiology, v. 9, p. 220-225, 2000. DOI: 10.1007/BF01623898.

RAFFAELLI, B.; HOIKKALA, E.; LEPPALA, E.; WAHALA, K. Enterolignans. Journal of Chromatography. B, v. 777, p. 29-43, 2002. DOI: https://doi.org/10.1016/S1570-0232(02)00092-2.

RUBILAR, M.; GUTIÉRREZ, C.; VERDUGO, M.; SHENE, C.; SINEIRO J. Flaxseed as a source of functional ingredients. Journal of Soil Science and Plant Nutrion, v. 10, p. 373-377, 2010. DOI: http://dx.doi.org/10.4067/S0718-95162010000100010

SAARINEN, N. M.; SMEDS, A.; MAKELA, S. I.; AMMALA, J.; HAKALA K.; PIHLAVA, J.-M.; RYHANEN, E.-L.; SJOHOLM, R.; SANTTI R.; Structural determinants of plant lignans for the formation of enterolactone in vivo. Journal of Chromatography B: Analytical Technologies Biomedical and Life Science, v. 777, p. 311-319, 2002. DOI: 10.1016/s1570-0232(02)00339-2.

SCHOGOR, A. L. B.; HUWS, S. A.; SANTOS, G. T. D.; SCOLLAN, N. D.; HAUCK, B. D.; WINTERS, A. L.; KIM, E. J.; PETIT, H. V. Ruminal Prevotella spp. may play an important role in the conversion of plant lignans into human health beneficial antioxidants. PLoS ONE, v, 9: e87949, 2014. DOI: https://doi.org/10.1371/journal.pone.0087949.

SETCHELL, K. D. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. The American Journal of Clinical Nutrition, v. 68, p. 1333S-1346, 1998. DOI: 10.1093/ajcn/68.6.1333S.

SINGH, K. K.; MRIDULA, D.; REHAL, J.; BARNWAL P.; Flaxseed: a potential source of food, feed and fiber. Critical Reviews in Food Science and Nutrition, p. 51, p. 210-222, 2011. DOI: https://doi.org/10.1080/10408390903537241.

SODER, K. J.; BRITO, A. F.; RUBANO, M. D.; DELL C. J. Effect of incremental flaxseed supplementation of an herbage diet on methane output and ruminal fermentation in continuous culture. Journal of Dairy Science, v. 95, p. 3961-3969, 2012. DOI: 10.3168/jds.2011-4981.

SOK, D.; CUI, H. S.; KIM, M. R. Isolation and bioactivities of furfuran type lignan compounds from edible plants. Recent Patents Food Nutrion & Agriculture, v. 1, p. 87-95, 2009. DOI: 10.2174/2212798410901010087.

THOMPSON, L. U.; BOUCHER, B. A.; ZHEN, L.; TTERCHIO, M.; KREIGER N. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutrition & Cancer, v. 54, p. 184-201, 2006. DOI: 10.1207/s15327914nc54025.

THOMPSON, L. U.; SEIDL, M. M.; RICKARD, S. E.; ORCHESON, L. J.; FONG, H. H. S. Antitumorigenic effect of a mammalian lignan precursors from flaxseed. Nutrition & Cancer, v. 26, p. 159-165, 1996. DOI: 10.1080/01635589609514472.

THOMPSON, L. U.; ROBB, P.; SERRAINO, M.; CHEUNG, F. Mammalian lignan production from various foods. Nutrition & Cancer, v. 16, p. 43-52, 1991. DOI: 10.1080/01635589109514139.

TOUILLAND, M. S.; THIÉBAUT, A. C. M.; FOURNIER, A.; NIRAVONG, M.; BOUTRON-RUAULT, M. C.; CHAPELO F. Dietary lignan intake and postmenopausal breast cancer risk by estrogen and progesterone receptor status. Journal of the Natural Cancer Institute, v. 99, p. 475-486, 2007. DOI: 10.1093/jnci/djk096.

TOURE, A.; XUEMING, X. Flaxseed lignans: source, biosynthesis, metabolism, antioxidant activity, bio-active components and health benefits. Comprehensive Reviews in Food Science and Food Safety, v. 9, p. 261-269, 2010. https://doi.org/10.1111/j.1541-4337.2009.00105.x.

VALADARES FILHO, S. C. Tabelas brasileiras de composição de alimentos para bovinos. 2 ed. Viçosa: UFV, DOZ, 2006. 329p.

WANG, C.; KURZER M. S. Effects of phytoestrogens on DNA synthesis in MCF-7 cells in the presence of estradiol or growth factors. Nutrition and Cancer, v. 31, p. 90-100, 1998. DOI: 10.1080/01635589809514686.

WANG, L-Q. Mammalian phytoestrogens: enterodiol and enterolactone. Journal Chromatography B, v. 777, p. 289-309, 2002. DOI: https://doi.org/10.1016/S1570-0232(02)00281-7.

WESTCOTT, N. D.; MUIR, A. D. Chemical studies on the constituents of Linum spp. In: Muir AD, Westcott ND, editors. Flax: the genus Linum. London: Taylor & Francis; p. 55–73, 2003.

ZACHUT, M.; ARIELI, A.; LEHRER, H.; LIVSHITZ, L.; YAKOBY, S.; MOALLEM U. Effects of increased supplementation of n-3 fatty acids to transition dairy cows on performance and fatty acid profile in plasma, adipose tissue, and milk fat. Journal of Dairy Science, v. 93, p. 5877-5889, 2010. DOI: 10.3168/jds.2010-3427.

ZUNG, A.; GLASER, T.; KEREM, Z.; ZADIK, Z. Breast development in the first 2 years of life: an association with soy-based infant formulas. Journal of Pediatric Gastroenterology and Nutrition, v. 46, p. 191-195, 2008. DOI: 10.1097/MPG.0b013e318159e6ae.




Como Citar

Paludo Ghedini, C., & Caroline de Moura, D. (2021). FLAXSEED MEAL FEEDING TO DAIRY COWS AS A STRATEGY TO IMPROVE MILK ENTEROLACTONE CONCENTRATION: A LITERATURE REVIEW. Nativa, 9(4), 373-381. https://doi.org/10.31413/nativa.v9i4.11809



Zootecnia / Animal Husbandry