
Modelos de machine learning aplicados na estimação da evapotranspiração de referência do Planalto Ocidental Paulista
Nativa, Sinop, v. 10, n. 4, p. 506-515, 2022.
514
LADLANI, I.; HOUICHI, L.; DJEMILI, L.; HEDDAM, S.;
BELOUZ, K. Estimation of daily reference
evapotranspiration (Eto) in the north of algeria using
adaptive neuro-Fuzzy Inference System (ANFIS) and
Multiple Linear Regression (MLR) Models: A
Comparative Study. Arabian Journal for Science and
Engineering, v. 118, n. 3-4, p. 163-178, 2012.
10.1007/s00703-012-0205-9
LAM, J. C.; WAN, K. K. W.; YANG, L. Solar radiation
modeling using ANNs for different climates in China.
Energy Conversion Management, v. 49, p. 1080-1090,
2008.
http://dx.doi.org/10.1016/j.enconman.2007.09.021
LANDERAS, G.; BEKOE, E.; AMPOFO, J.; LOGAH, F.;
DIOP, M.; CISSE, M.; SHIRI, J. New alternatives for
reference evapotranspiration estimation in West Africa
using limited weather data and ancillary data supply
strategies. Theoretical and Applied Climatology, v.
132, p. 701–716, 2018. http://doi.org/10.1007/s00704-
017-2120-y
LANDERAS, G.; ORTIZ-BARREDO, A.; LÓPEZ, J. J.
Comparison of artificial neural network models and
empirical and semi-empirical equations for daily reference
evapotranspiration estimation in the Basque Country
(Northern Spain). Agricultural Water Management, v.
95, p. 553-565, 2008.
http://dx.doi.org/10.1016/j.agwat.2007.12.011
LORENA, A. C.; JACINTHO, L. F. O.; SIQUEIRA, M. F.;
De GIOVANNI, R.; LOHMANN, L. G.; CARVALHO,
A. C. P. L. F.; YAMAMOTO, M. Comparing machine
learning classifiers in potential distribution modelling.
Expert Systems with Applications, v. 38, p. 5268-5275,
2011. http://doi.org/10.1016/j.eswa.2010.10.031
MAKKINK, G. F. Testing the Penman formula by means of
lysimeters. Journal of the Institution of Water
Engineers, v. 11, n. 3, p. 277-288, 1957.
MALLIKARJUNA, P.; JYOTHY, S. A.; REDDY, K. C. S.
Daily reference evapotranspiration estimation using
linear regression and ANN Models. Journal of The
Institution of Engineers, v. 97, n. 4, p. 215-221, 2013.
10.1007/s40030-013-0030-2
MANIKUMARI, N.; VINODHINI, G. Regression Models
for Predicting Reference Evapotranspiration. In
ternational Journal of Engineering Trends and
Technology, v. 38, n. 3, p. 134-139, 2016.
http://doi.org/10.14445/22315381/IJETT-V38P224
MARTÍ, P.; GASQUE, M. Ancillary data supply strategies
for improvement of temperaturebased ETo ANN
models. Agricultural Water Management, v. 97, p.
939-955, 2010.
http://doi.org/10.1016/j.agwat.2010.02.002
MARTÍ, P.; GONZÁLEZ-ALTOZANO, M. Reference
evapotranspiration estimation without local climatic data.
Irrigation Science, v. 29, p. 479-495, 2011.
http://doi.org/10.1007/s00271-010-0243-3
MARTÍNEZ, M. P.; CREMASCO, C. P.; GABRIEL
FILHO, L. R. A.; BRAGA JUNIOR, S. S.; BEDNASKI,
A. V.; QUEVEDO-SILVA, F.; CORREA, C. M.; SILVA,
D.; PADGETT, R. C. M. L. Fuzzy inference system to
study the behavior of the green consumer facing the
perception of greenwashing. Journal of Cleaner
Production, v. 242, e116064, 2020.
http://doi.org/10.1016/j.jclepro.2019.03.060
MATULOVIC, M.; PUTTI, F. F.; CREMASCO, C. P.;
GABRIEL FILHO, L. R. A. Technology 4.0 with 0.0
costs: fuzzy model of lettuce productivity with
magnetized water. Acta Scientiarum Agronomy, v. 43,
n. 1, e51384, 2021.
http://doi.org/10.4025/actasciagron.v43i1.51384
MAZIERO, L. P.; CHACUR, M. G. M.; CREMASCO, C. P.;
PUTTI, F. F.; GABRIEL FILHO, L. R. A. Fuzzy system
for assessing bovine fertility according to semen
characteristics. Livestock Science, v. 256, e104821,
2022. http://doi.org/10.1016/j.livsci.2022.104821
ORACLE CORPORATION. Chapter 1 General
Information. MySQL 5.7 Reference Manual. 2019.
Disponível em:
http://dev.mysql.com/doc/refman/5.7/en/introductio
n.html. Acesso em: 08 abr. 2019.
PANDORFI, H.; BEZERRA, A.C.; ATARASSI, R. T.;
VIEIRA, F. M. C.; BARBOSA FILHO, J. A. D.;
GUISELINI, C. Artificial neural networks employment
in the prediction of evapotranspiration of greenhouse-
grown sweet pepper. Revista Brasileira de Engenharia
Agrícola e Ambiental, v. 20, n. 6, p. 507-512, 2016.
http://doi.org/10.1590/1807-
1929/agriambi.v20n6p507-512
PENMAN, H. L. Natural evaporation from open water, bare
soil, and grass. Proceedings of the Royal Society, v.
193, n. 1, p. 120-146, 1948.
http://doi.org/10.1098/rspa.1948.0037
PEREIRA, D. F.; BIGHI, C. A.; GABRIEL FILHO, L. R.
A.; CREMASCO, C. P. C. Sistema fuzzy para estimativa
do bem-estar de matrizes pesadas. Engenharia
Agrícola, v. 28, n. 4, p. 624-633, 2008.
http://doi.org/10.1590/S0100-69162008000400002
PETKOVIC, D.; GOCIC, M.; TRAJKOVIC, S.;
SHAMSHIRBAND, S.; MOTAMEDI, S.; HASHIM, R.;
BONAKDARI, H. Determination of the most influential
weather parameters on reference evapotranspiration by
adaptive neuro-fuzzy methodology. Computers and
Electronics in Agriculture, v. 114, p. 277-284, 2015.
http://doi.org/10.1016/j.compag.2015.04.012
PRIESTLEY, C. H. B., TAYLOR, R. J. On the assessment
of surface heat flux and evaporation using large-scale
parameters. Monthly Weather Review, v. 100, n. 2, p.
81-92, 1972. http://doi.org/10.1175/1520-
0493(1972)100<0081:OTAOSH>2.3.CO;2
PUTTI, F. F.; CREMASCO, C. P.; SILVA JUNIOR, J. F.;
GABRIEL FILHO, L. R. A. Fuzzy modeling of salinity
effects on radish yield under reuse water irrigation.
Engenharia Agrícola, v. 42, n. 1, e215144, 2022.
http://doi.org/10.1590/1809-4430-
Eng.Agric.v42n1e215144/2022
PUTTI, F. F.; GABRIEL FILHO, L. R. A.; CREMASCO, C.
P.; BONINI NETO, A.; BONINI, C. S. B.; REIS, A. R.
A Fuzzy mathematical model to estimate the effects of
global warming on the vitality of Laelia purpurata orchids.
Mathematical Biosciences, v. 288, p. 124-129. 2017.
http://doi.org/10.1016/j.mbs.2017.03.005
PUTTI, F. F.; GABRIEL FILHO, L. R. A.; SILVA, A. O.;
LUDWIG, R.; CREMASCO, C. P. Fuzzy logic to
evaluate vitality of catasetum fimbiratum species
(Orchidacea). Irriga, v. 19, n. 3, p. 405-413, 2014.
http://doi.org/10.15809/irriga.2014v19n3p405