Nativa, Sinop, v. 9, n. 4, p. 471-480, 2021.
Pesquisas Agrárias e Ambientais
DOI: https://doi.org/10.31413/nativa.v9i4.12732 ISSN: 2318-7670
Atlantic Forest meets the Cerrado: floristic, structure and species distribution
of an ecotonal tree community
Gabriel Pavan SABINO1*, Vitor de Andrade KAMIMURA1,2, Gabriel Mendes MARCUSSO1,
Reinaldo MONTEIRO1
1Departamento de Botânica, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, SP, Brasil.
2 Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
*E-mail: gpsabino@gmail.com
(ORCID: 0000-0003-1284-8781; 0000-0002-3276-5812; 0000-0002-7520-2876; 0000-0003-1019-6003)
Recebido em 08/07/2021; Aceito em 01/11/2021; Publicado em 11/11/2021.
ABSTRACT: We evaluated the floristic and structural composition of a tree community in an ecotone between
Cerrado (cerradão) and Atlantic Forest (seasonal semideciduous forest) domains located in Porto Ferreira State
Park (PFSP), southeastern Brazil. We compared the floristic relationships of this ecotone with those of previous
surveys carried out on the same vegetation types and checked the species distribution among the Brazilian
biomes. We sampled all living trees with PBH>10 cm in 64 10x10 m plots (0.64 ha), totaling 1,755 individuals
belonging to 101 species and 37 families. The richest families were Myrtaceae (13 spp.) and Fabaceae (11 spp.),
and Siparuna guianensis was the most abundant species (188 individuals). We reported two threatened species. A
great number of species are widely distributed, occurring in different Brazilian biomes. Floristic similarity values
were low among the selected studies, but our sampled community clustered with communities of cerradão and
ecotone areas of previous surveys. Our results corroborate that ecotonal areas have great tree diversity and the
predominance of widely distributed species. This fact, combined with the vegetation thickening verified
through historical photographs, reinforces that the study area belongs to an under-changing ecotone.
Keywords: ecotone; cerradão; seasonal semideciduous forest; phytogeography; floristic similarities.
Mata Atlântica encontrando o Cerrado: florística, estrutura e distribuição de
espécies de uma comunidade arbórea ecotonal
RESUMO: No presente estudo, avaliamos a composição florística e estrutura de uma comunidade arbórea de
um ecótono entre o Cerrado (cerradão) e a Floresta Atlântica (floresta estacional semidecidual) localizado no
Parque Estadual de Porto Ferreira (PEPF), sudeste do Brasil. Verificamos também as relações florísticas com
outros levantamentos realizados nestas fitofisionomias, e analisamos a distribuição das espécies nos domínios
fitogeográficos brasileiros. Para isso amostramos todos os indivíduos vivos com PAP >10cm em 64 parcelas
de 10x10m (0,64 ha), totalizando 1755 indivíduos pertencentes a 101 espécies e 37 famílias. As famílias mais
ricas em espécies foram Myrtaceae (13 espécies) e Fabaceae (11) sendo Siparuna guianensis a espécie mais
abundante (188 indivíduos). Registramos duas espécies ameaçadas de extinção e verificamos um grande número
de espécies com ampla distribuição entre os domínios fitogeográficos do Brasil. Encontramos baixos valores
de similaridade florísticas entre as áreas analisadas, e a comunidade amostrada apresentou maior similaridade
com levantamentos realizados em área de cerradão e ecótonos. Em síntese, os resultados corroboram a grande
diversidade arbórea de áreas ecotonais, e o predomínio de espécies com ampla distribuição. Esse fato associado
ao adensamento da vegetação verificado em série fotográfica histórica, reforçam que a área do estudo pertence
a um ecótono em transformação.
Palavras-chave: ecótono; cerradão; floresta estacional semidecidual; fitogeografia; similaridade florísticas.
1. INTRODUCTION
Ecotones (gr. tonus = tension) are transitional areas
between ecological communities that commonly occur along
environmental gradients (ORCZEWSKA; GLISTA, 2005).
Studies have reported high species richness and abundance
tendency for ecotonal areas (e.g., KARK; van RENSBURG,
2006). Ecotones play an important role since environmental
gradients are important speciation and diversification sites
(SCHILTHUIZEN, 2000; SCHLUTER, 2000; SMITH et al.,
2001). The preservation of such areas can guarantee adaptive
responses of species to climate change (SMITH et al., 2001).
Savannah and forest ecotones play an important
ecological role in the tropics (HOFFMANN, 2005). Mosaics
of savannah-forest transitions occupy about 24% of the
Cerrado domain in Brazil (SILVA; BATES, 2002), and
several studies have pointed to edaphic factors as decisive
drivers of the establishment of Cerrado (savannah) and
Atlantic Forest physiognomies (FURLEY, 1992; RATTER,
1992; DURIGAN; RATTER, 2006; PINHEIRO;
MONTEIRO, 2008; BARROS et al. 2018; PINHEIRO et al.
2021). Furley (1992) concluded that soil moisture is a
determining factor in savannah-forest transitions. For Ratter
(1992), the soil is the main factor that influences the
geographic distribution of vegetation. Furthermore, fire
suppression can change the Cerrado vegetation types, since
Atlantic Forest meets the Cerrado: floristic, structure and species distribution of an ecotonal tree community
Nativa, Sinop, v. 9, n. 4, p. 471-480, 2021.
472
forest vegetation types can replace open vegetations over the
years (DURIGAN; RATTER, 2006; PINHEIRO et al.,
2021). On the other hand, the presence of fire can facilitate
the invasion of savannah species in seasonal semideciduous
forests (PINHEIRO; MONTEIRO, 2008).
Sauer (1988) claims that there is a balance in savannah-
forest ecotones in South America. However, several studies
have shown a movement of these phytocenoses and an
expansion of forest formations over areas previously
occupied by Cerrado vegetation types (COUTINHO, 1990;
RATTER, 1992; PIVELLO; COUTINHO, 1996;
DURIGAN; RATTER, 2006; PINHEIRO; MONTEIRO,
2021).
Floristic and structural studies have been carried out on
Cerrado and seasonal semideciduous forests of southeastern
Brazil (DURIGAN et al., 1994; IVANAUSKAS et al. 1999;
DURIGAN et al. 2002; TEIXEIRA et al. 2004; NETO et al.,
2009; PINHEIRO & DURIGAN, 2012; HENCKER et al.,
2012; GARCIA et al., 2015), but few of them have
encompassed transitional areas (e.g., PINHEIRO;
MONTEIRO, 2008; GUILHERME; NAKAJIMA, 2007;
GOMES et al., 2004). Thus, we still do not understand this
complex mosaic completely. Data about transitional areas are
the basis for restoration projects, considering their
importance for legal activities for environmental adaptations
and licensing processes (e.g., Degraded Areas Recovery Plan
PRAD). Furthermore, floristic relationships of these
ecotonal areas are important for characterizing and
contextualizing vegetations under its transitional condition.
In this study, we evaluate the composition, structure,
species distribution, and phytogeographic relationships of
the tree community of an ecotonal area to support recovery,
restoration and conservational actions in Cerrado-Atlantic
Forest ecotones in São Paulo state.
2. MATERIALS E METHODS
2.1. Study area
The study was conducted in an area with a cerradão
(CER) vegetation, a forested savannah, in transition with a
seasonal semideciduous forest (SSF) in Porto Ferreira State
Park (PFSP), municipality of Porto Ferreira, São Paulo state,
southeastern Brazil (Figure 1). Plots were placed in an area at
the north of “Lagoa do Cerrado” (21º50’49’’S, 47º25’39’’W),
where the average altitude was 600 m. The region’s climate is
classified as Cwa, or mesothermal dry winter, according to
the Köppen-Geiger scale (Alvares et al., 2013). The annual
mean temperature and precipitation are 22ºC and 1470 mm,
respectively, with a well pronounced dry winter (INMET,
2020).
The PFSP is composed of different vegetation types.
CER is predominant in the north and SSF in the south of
PFSP (Rossi et al., 2005). At the southernmost limit of the
PFSP, parallel to the Mogi Guaçu River, the predominant
vegetation type is the riparian forest (KONOPCZYK, 2014).
CER occupies an area of about 180 ha, where the topography
is higher (Bertoni et al., 2001). The study area has a secondary
vegetation that has greatly recovered its structure, as
evidenced by the sequential aerial photographs taken in the
1960s, 1970s, and 1980s (Figure 2).
2.2. Sampling and species distribution
We sampled 64 plots with 10x10 m (totalizing 0.64 ha),
alternately placed along eight transects (with eight plots each).
The delimitation of transects and plots was made by using
timber stakes and cotton strings. We sampled all living trees
and palms with a perimeter at breast height (PBH) > 10 cm.
The botanical material was identified by consulting
specialized bibliography and taxonomic specialists and by
comparing it with materials deposited in the Herbario
Rioclarense (HRCB) collection. Fertile material was
deposited in the HRCB collection. Taxa classification
followed APG IV (2016) and the nomenclature was updated
according to Flora do Brasil (Flora do Brasil, 2020), The Plant
List (2020), and Tropicos (2020). We assessed the threatened
status of the species sampled following the Livro Vermelho
da Flora do Brasil (MARTINELLI; MORAES, 2013).
For phytosociological analysis, we recorded the PBH
values and the height of each individual sampled. We
assessed the natural distribution of the species in Brazilian
biomes according to Flora do Brasil 2020 (2020). Species
occurring in four or more biomes were classified as “widely
distributed”.
Figure 1. Location of Porto Ferreira State Park (PFSP), Porto
Ferreira, o Paulo state. A- study site in São Paulo state map; B-
PFSP; C- vegetation types of PFSP. Red ellipse indicates the site of
the study plots.
Figura 1. Localização do Parque Estadual de Porto Ferreira (PEPF),
Porto Ferreira, estado de São Paulo. A- Local de estudo no mapa do
estado de São Paulo; B - PEPF; C- fitofisionomias do PEPF. A
elipse vermelha indica a localização das parcelas do estudo.
Figura 2. Fotografias aéreas do Parque Estadual de Porto Ferreira.
A- de 1962; B- de 1971; C- de 1983; D- imagem de satélite de 2020
(Google Earth©). Retângulos vermelhos indicam a localização das
parcelas do estudo.
Figure 2. Aerial photographs of Porto Ferreira State Park. A- from
1962; B- from 1971; C- from 1983; D- satellite image from 2020
(Google Earth©). Red rectangles indicate the site of the study plots.
Sabino et al.
Nativa, Sinop, v. 9, n. 4, p. 471-480, 2021.
473
We compiled 19 studies previously carried out on CER,
cerrado sensu stricto, SSF, and ecotones including one of these
vegetation types (Table 1). Only native shrub and tree taxa
identified at the species level were considered (if the study
included more life forms).
2.3. Data analysis
Phytosociological parameters such as relative frequency,
dominance, and importance value were calculated following
Shepherd (2008). We also estimated the Shannon diversity
index (H´) and Pielou equability (J´). Finally, to assess sample
sufficiency, we performed a species accumulation curve
(SAC) to compute the mean SAC and its standard deviation
from 999 random permutations of the data (GOTELLI;
COLWELL, 2001).
We conducted a cluster analysis to assess floristic
similarity among the compiled studies and the present study.
We built a binary matrix with the presence (1) and absence
(0) of all species and conducted an agglomerative hierarchical
cluster analysis (UPGMA) using the Jaccard dissimilarity
index (LEGENDRE; LEGENDRE, 2012). Then, we
verified exclusive and shared species among the studies
carried out on ecotones.
All analyses were conducted in R software (R
Development Core Team, 2020) using the ‘vegan’ package
(OKSANEN et al., 2013).
Table 1. Selected studies for the floristic similarity analysis. Co: Code; Ph: physiognomy; N: number of taxons included in similarity analysis;
Nt: total number of taxons; St. R. do P. Quatro: Santa Rita do Passa Quatro; S.B. do Campo: São Bernardo do Campo; Ssf: seasonal
semideciduous forest; Eco: ecotone; Cd: cerradão; C ss: cerrado sensu stricto.
Tabela 1. Estudos selecionados para a análise de similaridade florística. Co: Código; Ph: fisionomia; N: número de táxons utilizados na
análise de similaridade; Nt: Número total de táxons; St. R. do P. Quatro: Santa Rita do Passa Quatro; S.B. do Campo: São Bernardo do
Campo; Ssf: floresta estacional semidecidual; Eco: ecótono; Cd: cerradão; C ss: cerrado sensu stricto.
Co Study Site Ph. N / Nt REFERENCE
A
Porto Ferreira
SP
Eco
Present study
B
Bauru
SP
Eco
223/ 264
Pinheiro & Monteiro, 2008
C
Brotas
SP
Eco
116/
125
Gomes et al., 2004
D
Uberlandia
MG
Eco
121/ 141
Guilherme & Nakajima, 2007
E
Viçosa
MG
Ssf
Ribas et al., 2003
F
Campinas
SP
Ssf
132/ 362
Bernacci & Leitão, 1996
G
Campinas
SP
Ssf
135/ 201
Guaratini et al., 2008
H
St. R. do P.
Quatro
SP
Ssf
56/ 56
Bertoni et al., 1988
I
St. R. do P. Quatro
SP
Ssf
59/ 81
Vieira et al., 1989
J
Itatinga
SP
Ssf
87/ 97
Ivanauskas et al., 1999
K
S. B. do Campo
SP
Ssf
70/ 75
Pastore et al., 1992
L
São Carlos
SP
Ssf
123/ 146
Silva &
Soares, 2003
M
Águas da Prata
SP
Ssf
117/ 126
Toledo Filho et al., 1993
N
Uberlândia
MG
Cd
73/ 74
Alves et al., 2013
O
St. R. do P. Quatro
SP
Cd
Batalha & Mantovani, 2001
P
Luís Antonio
SP
Cd
Silva et al., 2004
Q
Bauru
SP
Cd
126/ 135
Pinheiro & Monteiro, 2006
R
Mogi mirim
SP
Cd
Toledo Filho et al., 1989
S
Uberlândia
MG
Cd, C ss
103/ 107
Costa & Araújo, 2001
T
Paraopeba
MG
Cd, C ss
81/ 91
Campos et al., 2006
3. RESULTS
We surveyed 1,755 trees and palms. We reported 101
species distributed in 37 botanical families and 69 genera
(Table 2). Euterpe edulis Mart. (Arecaceae) and Cedrela fissilis
Vell. (Meliaceae) were classified as “vulnerable” according to
the list of threatened species of the Livro Vermelho da Flora
do Brasil (Martinelli & Moraes, 2013). The Shannon-Wiener
diversity index was 3.65 nats/ind., and the Pielou equability
index was 0.79.
The richest species families were Myrtaceae (13 spp.),
Fabaceae (11 spp.), Annonaceae (6 spp.), Anacardiaceae (5
spp.), Melastomataceae, Rubiaceae, Euphorbiaceae, and
Lauraceae (4 spp. each). Altogether, these families comprised
50.4% of the species recorded and 54.3% of the individuals
sampled. Fifteen families were represented by a single
species, and 27 species were represented by a single
individual. Lauraceae was the family with the highest
importance value (IV= 28.9), followed by Anacardiaceae
(IV= 28.5), and Fabaceae (IV= 24.7).
Among the species, Tapirira guianensis Aubl. showed the
highest importance value (IV= 20), followed by Miconia affinis
DC. (IV= 18.7) and Siparuna guianensis Aubl. (IV= 18.4).
Siparuna guianensis was the most abundant species (188
individuals, 10.7% of the total amount of species) followed
by M. affinis (154 individuals, 8.7%), and Xylopia aromatica
(Lam.) Mart. (113 individuals, 6.4%). According to the
species accumulation curve, the sample size of our study was
sufficient to discuss differences among the areas (Figure 3).
The total basal area of the individuals was 11.65 m². The
mean height was 6.6 m (standard deviation= 2.9), with
minimum and maximum values of 1.9 and 22 m, respectively.
The mean diameter was 7.4 cm (standard deviation= 5.3),
with minimum and maximum values of 3.18 cm and 58.27
cm, respectively.
Out of the 101 species reported in this study, 87 (1,703
individuals) were identified at the species level and
classified based on their distribution among the Brazilian
biomes. Of this total, 38 species (44%) were classified as
“widely distributed”, and together they included 713
individuals (41.8%). Only five species (6%) and 31 individuals
(1.8%) are restricted to the Atlantic Forest. Likewise, six
species (7%) and 147 individuals (8.6%) are restricted to
Atlantic Forest meets the Cerrado: floristic, structure and species distribution of an ecotonal tree community
Nativa, Sinop, v. 9, n. 4, p. 471-480, 2021.
474
Cerrado. Also, 31 species (36%) and 670 individuals (39.3%)
are reported for both Cerrado and Atlantic Forest.
The total amount of 644 species were sampled from the
20 lists chosen for the floristic similarity, of which 244
(37.8%) have been reported exclusively in a single study
(appendix 1). Only 26 species (4%) occurred in 50% or more
of the lists (Appendix 2), and no species were recorded for
all areas.
Among the ecotonal lists (A-D, Table 1), 341 species
were reported, of which 215 (63%) has exclusive occurrence
(appendix 3), 126 (36.9%) occur in 50% or more of the 4 lists,
and 19 species were reported for all areas (appendix 4).
The similarity analysis showed a high coefficient of
cophenetic correlation (0.91), and floristic similarities were
higher among closer areas. The cluster analysis segregated
two major floristic groups (Figure 4). The first group (1)
clustered the studies carried out on CER and ecotones,
including the present study; the second (2) clustered the
studies carried out on SSF.
Table 2. Floristic list, structural parameters, and biomes of occurrence of an ecotonal tree community, Porto Ferreira State Park, municipality
of Porto Ferreira, São Paulo State, southeastern Brazil. Abd: abundance; RelDo: relative dominance; RelFr: relative frequency; IV:
importance value; WD: widely distributed; Cer: Cerrado; AF: Atlantic Forest; Am: Amazon; Pa: Pampa; Caa: Caatinga; Pn: Pantanal; “\”:
not evaluated; asterisks indicate threatened species according to “Livro Vermelho da Flora do Brasil” by CNCFlora (Martinelli & Moraes,
2013).
Tabela 2. Lista florística, parâmetros estruturais e ocorrência das espécies nos domínios fitogeográficos de uma comunidade arbórea
ecotonal, Parque Estadual de Porto Ferreira, cidade de Porto Ferreira, Estado de São Paulo, Sudeste do Brasil. Abd: abundância; RelDo:
dominância relativa; RelFr: frequência relativa; IV: valor de importância; WD: ampla distribuição; Cer: Cerrado; AF: Mata Atlântica; Am:
Amazônia; Pa: Pampa; Caa: Caatinga; Pn: Pantanal; “\”: não avaliado; asteriscos indicam espécies ameaçadas de acordo com o “Livro
Vermelho da Flora do Brasil”, CNCFlora (Martinelli & Moraes, 2013).
Family Species Abd RelDo RelFr IV Biomes
Anacardiaceae Astronium graveolens Jacq. 7 0.21 0.71 1.32 WD
Astronium urundeuva (M.Allemão) Engl. 1 0.04 0.1 0.2 WD
Lithraea molleoides (Vell.) Engl. 1 0.02 0.1 0.18 WD
Tapirira guianensis Aubl. 82 11.01 4.34 20.02 WD
Tapirira obtusa (Benth.) J.D.Mitch. 26 4.34 1.72 7.53 Cer, AF, Am
Annonaceae Annona sylvatica A.St.-Hil. 1 0.02 0.1 0.18 WD
Annona sp. 1 0.05 0.1 0.21 \
Duguetia lanceolata A.St.-Hil. 4 0.16 0.4 0.79 Cer, AF
Xylopia aromatica (Lam.) Mart. 113 4.13 4.34 14.91 Cer, Am
Xylopia brasiliensis Spreng. 2 0.11 0.2 0.42 AF
Xylopia sericea A.St.-Hil. 25 1.15 1.72 4.29 Cer, AF, Am
Apocynaceae Aspidosperma sp. 1 0.04 0.1 0.2 \
Araliaceae Dendropanax cuneatus (DC.) Decne. & Planch. 1 0.04 0.1 0.19 WD
Didymopanax morototoni (Aubl.) Decne. & Planch. 17 0.7 1.41 3.08 WD
Arecaceae Acrocomia aculeata (Jacq.) Lodd. ex Mart. 1 0.3 0.1 0.46 Cer, AF
Euterpe edulis Mart. * 1 0.03 0.1 0.19 Cer, AF
Syagrus romanzoffiana (Cham.) Glassman 27 5.34 1.92 8.8 Cer, AF, Pa
Asteraceae Piptocarpha macropoda (DC.) Baker 2 0.04 0.2 0.35 Cer, AF
Bignoniaceae Handroanthus ochraceus (Cham.) Mattos 3 0.07 0.2 0.44 WD
Handroanthus vellosoi (Toledo) Mattos 11 0.91 1.01 2.55 AF
Burseraceae Protium heptaphyllum (Aubl.) Marchand 4 0.17 0.2 0.6 WD
Calophyllaceae Calophyllum brasiliense Cambess. 1 0.02 0.1 0.17 WD
Clethraceae Clethra scabra Pers. 2 0.12 0.2 0.43 Cer, AF, Caa
Combretaceae Terminalia argentea Mart. & Zucc. 3 0.19 0.3 0.66 WD
Terminalia glabrescens Mart. 42 1.88 2.02 6.29 WD
Euphorbiaceae Alchornea glandulosa Poepp. & Endl. 2 0.7 0.2 1.02 Cer, AF, Am
Croton floribundus Spreng. 10 0.9 0.91 2.38 AF
Maprounea guianensis Aubl. 59 2.44 3.63 9.44 Cer, AF, Am
Sebastiania sp. 3 0.15 0.3 0.62 \
Fabaceae Andira anthelmia (Vell.) Benth. 4 0.13 0.2 0.56 Cer, AF
Andira humilis Mart. ex Benth. 1 1 0.1 1.15 Cer
Copaifera langsdorffii Desf. 61 9.27 2.72 15.47 WD
Dimorphandra mollis Benth. 1 0.21 0.1 0.36 Cer, Am, Pn
Inga striata Benth. 1 0.09 0.1 0.25 WD
Leptolobium dasycarpum Vogel 1 0.06 0.1 0.22 Cer
Machaerium aculeatum Raddi 6 0.3 0.61 1.25 Cer, AF, Pn
Machaerium villosum Vogel 5 0.29 0.5 1.08 WD
Peltophorum dubium (Spreng.) Taub. 1 0.01 0.1 0.17 WD
Platypodium elegans Vogel 9 1.88 0.71 3.09 WD
Senegalia polyphylla (DC.) Britton & Rose 12 0.22 0.81 1.72 WD
Lacistemataceae Lacistema hasslerianum Chodat 6 0.07 0.61 1.02 Cer
Lamiaceae Aegiphila integrifolia (Jacq.) Moldenke 3 0.2 0.3 0.67 WD
Sabino et al.
Nativa, Sinop, v. 9, n. 4, p. 471-480, 2021.
475
Family Species Abd RelDo RelFr IV Biomes
Lauraceae Ocotea corymbosa (Meisn.) Mez 77 7.47 4.24 16.1 Cer, AF
Ocotea nutans (Nees) Mez 24 0.66 1.92 3.94 Cer, AF
Ocotea pulchella (Nees & Mart.) Mez 59 4.22 3.83 11.42 Cer, AF, Pa
Ocotea velutina (Nees) Rohwer 1 0.29 0.1 0.45 Cer, AF
Malpighiaceae Byrsonima intermedia A.Juss. 85 3.93 4.04 12.81 Cer
Byrsonima sp. 3 0.13 0.3 0.6 \
Malvaceae Luehea divaricata Mart. 2 0.03 0.2 0.35 WD
Luehea grandiflora Mart. 4 0.92 0.4 1.55 WD
Pseudobombax grandiflorum (Cav.) A.Robyns 7 0.42 0.4 1.22 AF
Melastomataceae Miconia affinis DC. 154 4.86 5.15 18.78 Cer, AF, Am
Miconia ligustroides (DC.) Naudin 3 0.12 0.3 0.6 Cer, AF, Caa
Miconia rubiginosa (Bonpl.) DC. 1 0.02 0.1 0.17 Cer, Am
Tibouchina sp. 1 0.01 0.1 0.17 \
Meliaceae Cedrela fissilis Vell. * 2 0.11 0.2 0.42 WD
Trichilia casaretti C.DC. 5 0.07 0.3 0.66 Cer, AF
Trichilia pallida Sw. 44 1.19 2.22 5.92 Cer, AF, Am
Moraceae Ficus guaranitica Chodat 6 0.14 0.61 1.08 Cer, AF
Maclura tinctoria (L.) D.Don ex Steud. 1 0.01 0.1 0.17 WD
Myristicaceae Virola sebifera Aubl. 17 0.73 1.41 3.11 Cer, AF, Am
Myrtaceae Eugenia florida DC. 6 0.09 0.61 1.04 WD
Eugenia sp. 1 0.42 0.1 0.58 \
Myrcia bella Cambess. 35 2.01 2.02 6.03 Cer
Myrcia guianensis (Aubl.) DC. 19 0.69 1.31 3.08 WD
Myrcia sp. 24 0.41 1.51 3.29 \
Myrcia splendens (Sw.) DC. 11 0.19 1.01 1.82 WD
Myrcia tomentosa (Aubl.) DC. 20 0.72 1.61 3.47 WD
Myrcia venulosa DC. 10 0.22 1.01 1.8 Cer, AF
Myrciaria sp. 2 0.03 0.2 0.34 \
Myrtaceae 1 1 0.01 0.1 0.16 \
Myrtaceae 2 2 0.02 0.1 0.23 \
Myrtaceae 3 1 0.02 0.1 0.18 \
Psidium rufum Mart. ex DC. 15 0.79 1.11 2.75 Cer, AF
Ochnaceae Ouratea castaneifolia (DC.) Engl. 2 0.2 0.2 0.51 WD
Peraceae Pera glabrata (Schott) Baill. 45 2.69 2.42 7.67 WD
Primulaceae Myrsine coriacea (Sw.) R.Br. ex Roem. & Schult. 16 0.5 1.61 3.03 Cer, AF, Pa
Myrsine umbellata Mart. 100 3.33 4.54 13.57 WD
Proteaceae Roupala montana Aubl. 1 0.01 0.1 0.17 WD
Rosaceae Prunus myrtifolia (L.) Urb. 3 0.06 0.3 0.54 WD
Rubiaceae Amaioua guianensis Aubl. 21 0.47 1.72 3.38 Cer, AF, Am
Cordiera sessilis (Vell.) Kuntze 11 0.16 0.91 1.7 Cer, Caa
Ixora brevifolia Benth. 15 1.38 1.31 3.55 Cer, Caa
Rudgea viburnoides (Cham.) Benth. 1 0.02 0.1 0.18 Cer, Caa, Am
Rutaceae Zanthoxylum rhoifolium Lam. 2 0.14 0.2 0.46 WD
Salicaceae Casearia gossypiosperma Briq. 4 0.19 0.3 0.72 Cer, AF, Am
Casearia sp. 1 0.01 0.1 0.16 \
Casearia sylvestris Sw. 29 0.79 1.92 4.36 WD
Sapindaceae Allophylus semidentatus (Miq.) Radlk. 1 0.02 0.1 0.18 Cer, AF, Am
Cupania vernalis Cambess. 9 0.2 0.81 1.52 WD
Matayba sp. 10 0.77 0.81 2.15 \
Sapotaceae Chrysophyllum marginatum (Hook. & Arn.) Radlk. 9 0.41 0.71 1.63 WD
Pouteria sp. 1 0.03 0.1 0.19 \
Siparunaceae Siparuna guianensis Aubl. 188 2.18 5.55 18.44 WD
Styracaceae Styrax acuminatus Pohl 1 0.03 0.1 0.19 AF
Styrax camporum Pohl 16 0.71 1.51 3.13 Cer, AF, Caa
Styrax ferrugineus Nees & Mart. 2 0.06 0.2 0.38 Cer
Urticaceae Cecropia pachystachya Trécul 5 0.19 0.4 0.88 WD
Vochysiaceae Qualea cordata Spreng. 7 0.54 0.71 1.64 Cer, AF, Caa
Qualea grandiflora Mart. 17 1.67 1.41 4.06 Cer
Vochysia tucanorum Mart. 31 3.32 1.31 6.4 Cer, AF
Atlantic Forest meets the Cerrado: floristic, structure and species distribution of an ecotonal tree community
Nativa, Sinop, v. 9, n. 4, p. 471-480, 2021.
476
Figure 3. Species accumulation curve generated by using the
sampling random method for the tree community surveyed in the
ecotonal area of Porto Ferreira State Park, Porto Ferreira, Brazil.
Figura 3. Curva de acumulação de espécies geradas para a
comunidade arbórea amostrada em área ecotonal, Parque Estadual
de Porto Ferreira, Porto Ferreira, Brasil.
Figure 4. Cluster analysis (UPGMA), using Jaccard’s index, of 20
studies carried out on Cerrado, Atlantic Forest, and ecotones. A
the present study. A-T previous selected studies. The list of the
selected studies is given in Table 1.
Figura 4. Análise de agrupamento (UPGMA) usando o índice de
Jaccard entre 20 estudos conduzidos no Cerrado, Mata Atlântica e
ecótonos. Letra A- presente estudo. Estudos (identificados pelas
letras A-T) estão disponíveis na tabela 1.
4. DISCUSSION
The tree diversity we found in this survey was similar
from what was found in previous studies carried out on
Cerrado (Toledo Filho et al.,1989; Costa & Araújo, 2001;
Silva et al., 2004), SSF (Vieira et al., 1989; Ivanauskas et al.,
1999), and ecotones (Gomes et al., 2004; Guilherme;
Nakajima, 2007). However, diversity comparisons should be
made with caution, given the differences in inclusion criteria
and sample sizes among the studies. Studies encompassing a
big range of life forms (e.g., Bernacci; Leitão, 1996; Batalha;
Mantovani, 2001; Guaratini et al., 2008; Pinheiro; Monteiro,
2008) naturally show a greater number of species.
The diversity value (3.65) found in the present study site
is higher than those of studies on CER (which range from
2.46 to 3.54) (Costa; Araújo, 2001; Alves et al., 2013) and
higher than the expected for SSF (ranging from 3.45 to 3.77)
(Ivanauskas, 1999; Silva; Soares, 2003), and ecotone sites
(ranging from 3.37 to 3.99) (Gomes et al., 2004; Guilherme;
Nakajima, 2007). This shows that the diversity in transitional
areas can be greater than what has been found in underlying
vegetation types.
The richest families of tree species corroborate the results
found for CER (Silva et al., 2004; Campos et al., 2006), SSF
(Bernacci; Leitão, 1996; Ivanauskas et al., 1999; Guaratini et
al., 2008), and ecotones (Gomes et al., 2004; Guilherme;
Nakajima, 2007; Pinheiro; Monteiro, 2008). In SSF surveys,
Fabaceae and Myrtaceae are often the richest families (Vieira
et al., 1989; Bernacci; Leitão, 1996; Ivanauskas et al., 1999;
Guaratini et al., 2008). Anacardiaceae is the only family of our
list rarely ranked among the most diverse family in other
studies. In Atlantic Forest, Myrtaceae, Fabaceae,
Melastomataceae, Rubiaceae, and Euphorbiaceae are among
the 10 richest families (BFG, 2015). These families are also
among the richest families in Cerrado, except for Myrtaceae
(BFG, 2015).
Lauraceae was the family with the highest importance
value (IV= 9.64%) due to the large dimensions of the
individuals and the abundance of Ocotea corymbosa and Ocotea
pulchella. Likewise, Anacardiaceae showed the second highest
IV (9.5%) due to the great number of individuals of Tapirira
guianensis and Tapirira obtusa surveyed and their big sizes.
Many species were represented by a few individuals,
corroborating the distribution pattern of individuals of
tropical forest species (HUBBEL, 2013). In that sense, 45
species were represented by three or fewer individuals, 27 of
which were represented by a single individual (e.g., Andira
humilis, Acrocomia aculeata, Calophyllum brasiliense, and Ocotea
velutina). The presence of rare or naturally low-density species
indicates that new taxa tend to be found as the sample area
increases, as demonstrated by Condit et al. (1996).
Regarding the most important species, Tapirira guianensis,
has been reported in several studies carried out on different
vegetation types and is considered a generalist species
(Oliveira-Filho; Fontes, 2000). Siparuna guianensis, the most
abundant species in the present study, has been frequently
sampled in CER vegetation (e.g., Fina; Monteiro, 2009;
Pereira-Silva et al., 2004) and reported in studies carried out
on SSF (e.g., Joly, 1994; Silva et al., 2004; Yamamoto et al.,
2005).
The basal area of the individuals we found was low (e.g.,
Toledo Filho et al., 1989; Vieira et al., 1989; Ivanauskas et al.,
1999; Costa; Araújo, 2001; Guilherme; Nakajima, 2014). This
fact may be related to anthropic disturbances suffered in the
past, such as selective cutting, as showed in Figure 2 for the
area of the present study. This supports that low basal area
values are found in areas with selective cutting history
(ALVES et al., 2013).
Many species of our study have wide distribution,
occurring in different Brazilian biomes, which was also
reported by Gomes et al. (2004) for another ecotonal area.
Durigan et al. (2012) highlighted that generalist species with
high ecological plasticity are generally abundant in ecotonal
Sabino et al.
Nativa, Sinop, v. 9, n. 4, p. 471-480, 2021.
477
areas. The predominance of species with wide distribution
and the presence of species occurring in both Cerrado and
Atlantic Forest reinforce that the area we studied is, in fact,
an ecotone. On the other hand, few species are restricted to
the Cerrado domain, e.g., Qualea grandiflora, Byrsonima
intermedia, and Myrcia bella; and to the Atlantic Forest, e.g.,
Xylopia brasiliensis, Handroanthus vellosoi, and Pseudobombax
grandiflorum (Flora do Brasil, 2020).
The shared species among ecotonal studies (Appendix 4),
such as Copaifera langsdorffii, Ocotea corymbosa, Platypodium
elegans, Terminalia glabrescens, and Vochysia tucanorum, can be
indicator species of Cerrado-Atlantic Forest ecotones from
southeastern Brazil (DURIGAN et al., 2012).
Changes in the vegetation type of the study site over time
(e.g., Figure 2), with a putative replacement of species of SSF
over those of CER, indicate that fire suppression and soil
conditions allowed the development of both floristics unities.
The ecotonal area, was composed of savannah
physiognomies with species of Cerrado (BERTONI et al.,
2001; MATTOS; ROCHA, 2002). Currently, it is mainly
composed of CER and SSF. Studies have indicated that fire
is an important modelling agent in the physiognomies of
Cerrado (HENRIQUES, 2005; HOFFMAN; MOREIRA,
2002; PINHEIRO et al., 2021). Fire suppression can replace
areas initially occupied by open forms of Cerrado by CER
and SSF over the years (DURIGAN et al., 1987; DURIGAN;
RATTER 2006). A common action taken in protected areas
in Brazil is to extinguish fire events (Monteiro, personal
communication), which naturally occur in Cerrado
(FIDELIS, 2020).
The analysis of floristic relationships among the
compared areas showed a marked distinction between
Cerrado and SSF, but placed ecotonal areas closer to the
Cerrado or as a subgroup. Although, species of the SSF can
colonize areas with fire suppression in Cerrado, the
transformation of the vegetation type can be constrained by
the soil type (HARIDASSAN, 1992; ROSSI et al., 2005;
RODRIGUES et al., 2016; BARROS et al., 2018).
Furthermore, we observed a great floristic heterogeneity
among the analyzed areas, which included many exclusive
and few shared species. Even though communities were
sampled in geographically close areas and had the same
vegetation types, they had few shared species. Our results
support the hypothesis that tropical tree communities have a
great floristic heterogeneity over short geographic distances
(HUBBEL, 2013; BUENO et al., 2018). In addition, our
results indicate that ecotonal tree communities may shelter a
heterogeneous species composition and have species from
different vegetation types. However, geographically closer
communities share more species.
5. CONCLUSIONS
In this study, we provided important data about a poorly
known vegetation type, corroborating the importance of
preserving ecotonal areas for maintaining the high diversity
of tropical tree communities. Our data can also help to
recognize ecotones between Cerrado and Atlantic Forest
from southeastern Brazil and can be used as a floristic
reference for future conservation and restorative measures.
6. ACKNOWLEDGMENTS
We would like to thank Marco Antonio de Assis and
Alessandra Fidelis for all suggestions; and the PFSP
employees for the technical support.
7. REFERENCES
ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.;
GONÇALVES, J. L. de M.; SPAROVEK, G. Köppen’s
climate classification map for Brazil. Meteorologische
Zeitschrift, v. 22, n. 6, p. 711-728, 2013.
DOI: 10.1127/0941-2948/2013/0507
ALVES, H. R.; JÚNIOR, J. A. P.; LOPES, S. F.; SILVA, P.
P. F.; PEPPE, F. B.; SCHIAVINI, I. Fitossociologia e
grupos ecológicos da comunidade lenhosa em um
remanescente de cerradão em Uberlândia, MG.
Caminhos de Geografia, v. 14, n. 46, p. 236-245, 2013.
APG IV (Angiosperm Phylogeny Group). An update of the
Angiosperm Phylogeny Group classification for the
orders and families of flowering plants: APG IV.
Botanical Journal of the Linnean Society, v. 181, n. 1,
p. 1-20, 2016. DOI: https://doi.org/10.1111/boj.12385
BARROS, M. F.; PINHO, B. X.; LEÃO, T.; TABARELLI,
M. Soil attributes structure plant assemblages across an
Atlantic forest mosaic. Journal of Plant Ecology, v. 11,
n. 4, p. 613-622, 2018. DOI:
https://doi.org/10.1093/jpe/rtx037
BATALHA, M. A.; MANTOVANI, W. Floristic
composition of the cerrado in the Pé-de-gigante reserve
(Santa Rita do Passa Quatro, Southeastern Brazil). Acta
Botanica Brasilica, v. 15, n. 3, p. 289-304, 2001. DOI:
https://doi.org/10.1590/S0102-33062001000300001
BERNACCI, L. C.; LEITÃO FILHO, H. F. Flora
fanerogâmica da Fazenda São Vicente, Campinas, SP.
Revista Brasileira de Botânica, v. 19. P. 149-164, 1996.
BERTONI, J. E. A.; MARTINS, F. R.; MORAES, J. L.;
SHEPHERD, G. J. Composição florística e estrutura
fitossociológica do Parque Estadual de Vassununga,
Santa Rita do Passa Quatro, SP - Gleba Praxedes.
Boletim Técnico do Instituto Florestal, v. 42, p. 149-
170, 1988.
BERTONI, J. E. A.; TOLEDO FILHO, D. V.; LEITÃO
FILGO, H. F.; FRANCO, G. A. D. C.; AGUIAR, O. T.
Flora arbórea e arbustiva do cerrado do Parque Estadual
de Porto Ferreira (SP). Revista do Instituto Florestal,
v. 13, n. 2, p. 169-188, 2001.
BUENO, M. L.; DEXTER, K. G.; PENNINGTON, R. T.;
PONTARA, V.; NEVES, D. M.; RATTER, J. A.;
OLIVEIRA-FILHO, A. T. The environmental triangle of
the Cerrado Domain: Ecological factors driving shifts in
tree species composition between forests and savanas.
Journal of Ecology, v. 106, n. 5, p. 2109-2120, 2018.
DOI: https://doi.org/10.1111/1365-2745.12969
COLWELL, R. K.; CHAO, A.; GOTELI, N. J.; LIN, S.-Y.;
MAO, C. X.; CHAZDON, R. L.; LONGINO, J. T.
Models and estimators linking individual-based and
sample-based rarefaction, extrapolation, and comparison
of assemblages. Journal of Plant Ecology, v. 5, n. 1, p.
3-21, 2012. DOI: https://doi.org/10.1093/jpe/rtr044
CAMPOS, E. P.; DUARTE, T. G.; NERI, A. V.; SILVA, A.
F.; MEIRA-NETO, J. A. A.; VALENTE, G. E.
Composição florística de um trecho de cerradão e cerrado
sensu stricto e sua relação com o solo na Floresta Nacional
(FLONA) de Paraopeba, MG, Brasil. Revista Árvore, v.
30, n. 3, p. 471-479, 2006.
CONDIT, R.; HUBBEL, S. P.; LAFRANKIE, J. V.;
SUKUMAE, R.; MANOKARAN, N.; FOSTER, R. B.;
ASHTON, P. S. Species-area and species- individual
relationships for tropical trees: a comparison of three 50-
Atlantic Forest meets the Cerrado: floristic, structure and species distribution of an ecotonal tree community
Nativa, Sinop, v. 9, n. 4, p. 471-480, 2021.
478
ha plots. Journal of Ecology, v. 84, p. 549-562, 1996.
DOI: https://doi.org/10.2307/2261477
COSTA, A. A.; ARAÚJO, G. M. Comparação da vegetação
arbórea de cerradão e de cerrado na Reserva do Panga,
Uberlândia, Minas Gerais. Acta Botanica Brasilica, v.
15, n. 1, p. 63-72, 2001.
COUTINHO, L. M. Fire in the ecology of the Brazilian
cerrado. In: GOLDAMMER, J. G. (Ed.). Fire in the
tropical biota. Berlin: Springer-Verlag, 1990. p. 81-105.
DURIGAN, G. et al. Fitossociologia e evolução da densidade
da vegetação do cerrado de Assis, SP. Boletim Técnico
do Instituto Florestal, v. 41, n. 1, p. 59-78, 1987.
DURIGAN, G.; FREITAS, L. F. H.; RODRIGUES, R. R.
Phytosociology and structure of a frequently burnt
cerrado vegetation in SE-Brazil. Flora, v. 189, n. 2, p.
153-160, 1994. DOI: https://doi.org/10.1016/S0367-
2530(17)30582-0
DURIGAN, G.; SANTOS, J. D.; GANDARA, F. B.
Fitossociologia de dois fragmentos de Floresta Estacional
Semidecidual no Pontal do Paranapanema, SP. Revista
do Instituto Florestal, v. 14, n. 1, p. 13-26, 2002.
DURIGAN, G.; RATTER, J. A. Successional changes in
Cerrado and Cerrado/Forest ecotonal vegetation in
western São Paulo state, Brazil, 1962–2000. Edinburgh
Journal of Botany, v. 63, n. 1, p. 119-130, 2006. DOI:
https://doi.org/10.1017/S0960428606000357
FIDELIS, A. Is fire always the “bad guy”?. Flora, v. 268,
e151611, 2020. DOI:
https://doi.org/10.1016/j.flora.2020.151611
FINA, F. G.; MONTEIRO, R. Estudo da estrutura da
comunidade arbustivoarbórea de uma área de cerradão,
município de Pirassununga (SP). Neotropical Biology
and Conservation, v. 4, n. 1, p. 40-48, 2009. DOI:
http://dx.doi.org/10.4013/5114
Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro.
Avaiable from: http://floradobrasil.jbrj.gov.br/
FURLEY, P. A. Edaphic changes at forest savanna boundary
with particular reference to neotropics. In: FURLEY, P.
A.; PROCTOR, J.; RATTER, J. A. (Eds). Nature and
dynamics of forest-savanna boundaries. London:
Chapman & Hall, 1992. 616p.
GARCIA, C. A.; SANTOS, A. G.; BARREIRA, S. Estrutura
fitossociológica de uma área de cerrado na estação
ecológica de Itapeva, São Paulo, Brasil. Revista de
Agricultura Neotropical, v. 2, n. 2, p. 77-85, 2015.
GOMES, B. Z.; MARTINS, F. R.; TAMASHIRO, J. Y.
Estrutura do cerradão e da transição do cerradão com a
floresta paludícola num fragmento da International Paper
do Brasil Ltda., em Brotas, SP. Revista Brasileira de
Botânica, v. 27, n. 2, p. 249-262, 2004. DOI:
https://doi.org/10.1590/S0100-84042004000200005
GUARATINI, M. T. G.; GOMES, E. P. C.; TAMASHIRO,
J. Y.; RODRIGUES, R. R. Composição florística da
Reserva Municipal de Santa Genebra, Campinas, SP.
Revista Brasileira de Botânica, v. 31, n. 2, p. 323-337,
2008. DOI: https://doi.org/10.1590/S0100-
84042008000200015
GUILHERME, F. A. G.; NAKAJIMA, J. N. Estrutura da
vegetação de um remanescente ecotonal urbano floresta-
savana no Parque do Sabia, em Uberlândia, MG. Revista
Árvore, v. 31, n. 2, p. 329-338, 2007. DOI:
https://doi.org/10.1590/S0100-67622007000200016
HARIDASAN, M. Observations on soils, foliar nutrient
concentration and floristic composition of cerrado sensu
stricto and cerradão communities in central Brazil. In:
FURLEY, P. A.; PROCTOR, J.; RATTER, J. A. (Eds.).
Nature and dynamics of forest-savanna boundaries.
London: Chapman & Hall Publishing, 1992. p.171-184.
HENCKER, C.; ASSIS, A. M.; LIRIO, E. J. Fitossociologia
de um trecho de floresta estacional semidecidual no
município de Itarana (ES). Natureza On-line, v. 10, n.
3, p.153-159, 2012.
HENRIQUES, R. P. B. Influência da história, solo e fogo na
distribuição e dinâmica das fitofisionomias no bioma do
Cerrado. In: SCARIOT, A.; SOUSA-SILVA, J. C.;
FELFILI, J. M. (Orgs.) Cerrado: ecologia,
biodiversidade e conservação. Brasília: Ministério do
Meio Ambiente, 2005. 439p.
HOFFMANN, W. A. Ecologia comparativa de espécies
lenhosas de cerrado e de mata. In: SCARIOT, A.;
SOUSA-SILVA, J. C.; FELFILI, J. M. (Orgs.) Cerrado:
ecologia, biodiversidade e conservação. Brasília:
Ministério do Meio ambiente, 2005. p. 155-165. (Cap. 8)
HOFFMANN, W. A.; MOREIRA, A. G. The role of fire in
population dynamics of woody plants. In: OLIVEIRA, P.
S.; MARQUIS, R. S. Ecology and natural history of a
neotropical savanna: the cerrados of Brazil. The
University of Columbia Press, 2002. p. 159-177.
HUBBELL, S. P. Tropical rain forest conservation and the
twin challenges of diversity and rarity. Ecology and
Evolution, v. 3, p. 3263-3274, 2013. DOI:
https://doi.org/10.1002/ece3.705
INMET_Instituto Nacional de Meteorologia. 2020.
Disponível em
http://www.inmet.gov.br/portal/index.php?r=home2/i
ndex Access: 2020 feb.
IVANAUSKAS, N. M.; RODRIGUES, R. R.; NAVE, A. G.
Fitossociologia de um trecho de Floresta Estacional
Semidecidual em Itatinga, São Paulo, Brasil. Scientia
Forestalis, n. 56, p. 83-99, 1999.
KARK, S.; VAN RENSBURG, B. J. Ecotones: marginal or
central areas of transition? Israel Journal of Ecology
and Evolution, v. 52, n. 1, p. 29-53, 2006. DOI:
10.1560/IJEE.52.1.29
KONOPCZYK, R. M. G. Composição florística,
estrutura e heterogeneidade ambiental da
comunidade arbórea de uma várzea em Porto
Ferreira, SP, Brasil. 74f. Dissertação (Mestrado em
Ciências Biológicas) - Universidade Estadual Paulista, Rio
Claro, 2014.
LEGENDRE, P.; LEGENDRE, L. Numerical ecology. v.
24. 3 ed. Amsterdam: Elsevier, 2012. 1006p.
MARTINELLI, G.; MORAES, M. A. (Orgs.) Livro
Vermelho da Flora do Brasil. Rio de Janeiro: Centro
Nacional de Conservacao da Flora (CNCFLORA), 2013.
1102p.
MUELLER-DOMBOIS, D.; ELLEMBERG, H. Aims and
methods of vegetation ecology. New York: John Wiley
& Sons, 1974. 584p.
NETO, O. C. D.; SCHIAVINI, I.; LOPES, S. F.; VALE, V.
S.; GUSSON, A. E.; OLIVEIRA, A. P. Estrutura
fitossociológica e grupos ecológicos em fragmento de
floresta estacional semidecidual, Uberaba, Minas Gerais,
Brasil. Rodriguésia, v. 60, n. 4, p. 1087-1100, 2009. DOI:
https://doi.org/10.1590/2175-7860200960418
OKSANEN, J.; BLANCHET, F. G.; KINDT, R.;
LEGENDRE, P.; MINCHIN, P. R.; O’HARA, R. B.;
SIMPSON, G. L.; SOLYMOS, P.; STEVENS, M. H. H.;
Sabino et al.
Nativa, Sinop, v. 9, n. 4, p. 471-480, 2021.
479
WAGNER, H. Vegan: Community Ecology Package.
R Package Version 2.0-10. 2013. Available from:
http://vegan.r-forge.r-project.org
ORCZEWSKA, A.; GLISTA, A. Floristic analysis of the two
woodland-meadow ecotones differing in orientation of
the forest edge. Polish Journal of Ecology, v. 53, n. 3,
p. 365-382, 2005.
PASTORE, J. A.; AGUIAR, O. T.; ESTEVES, R.; SILVA,
C. A. F. Flora arbóreo-arbustiva do Parque Chico
Mendes, município de São Bernardo do Campo (SP). In:
Congresso Nacional sobre Essências Nativas, II. Anais...
1992. p. 269-273. Disponível em:
https://smastr16.blob.core.windows.net/iflorestal/ifref
/RIF4-1/RIF4-1_269-273.pdf
PINHEIRO, M. H. O.; MONTEIRO, R. Contribution of
Forest Species to the Floristic Composition of a Forested
Savanna in Southeastern Brazil. Brazilian Archives of
Biology and Technology, v. 49, n. 5, p. 763-774, 2006.
https://doi.org/10.1590/S1516-89132006000600011
PINHEIRO, M. H. O.; MONTEIRO, R. Florística de uma
Floresta Estacional Semidecidual, localizada em ecótono
savânico-florestal, no município de Bauru, SP, Brasil.
Acta Botanica Brasilica, v. 22, n. 4, p. 1085-1094, 2008.
https://doi.org/10.1590/S0102-33062008000400019
PINHEIRO, E. S.; DURIGAN, G. Diferenças florísticas e
estruturais entre fitofisionomias do cerrado em Assis, SP,
Brasil. Revista Árvore, v. 36, n. 1, p. 181-193, 2012. DOI:
https://doi.org/10.1590/S0100-67622012000100019
PINHEIRO, M. H. O.; AZEVEDO, T. S.; FERREIRA, F.
L.; MONTEIRO, R. Vegetation patterns and the
influence of rainfall after long-term fire suppression on a
woody community of a Brazilian savanna. Anais da
Academia Brasileira de Ciências, v. 93, n. 1,
e20191405, 2021. 10.1590/0001-3765202120191405
PIVELLO, V. R.; COUTINHO, L. M. A qualitative
successional model to assist in the management of
Brazilian cerrados. Forest Ecology and Management,
v. 87, p. 127-138, 1996.
R Core Team (2020). R: A language and environment for
statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. Available from:
https://www.R-project.org/
RATTER, J. A. Transition between cerrado and forest
vegetation in Brazil. In: FURLEY, P. A.; PROCTOR, J.;
RATTER, J. A. (Eds). Nature and dynamics of forest-
savana boundaries. London: Chapman & Hall, 1992.
616p.
RIBAS, R. F.; NETO, J. A. A. M.; SILVA, A. F.; SOUZA, A.
L. Composição florística de dois trechos em diferentes
etapas serais de uma floresta estacional demidecidual em
Viçosa, Minas Gerais. Revista Árvore, v. 27, n. 6, p. 821-
830, 2003. DOI: https://doi.org/10.1590/S0100-
67622003000600008
RISSER, P. G. Ecotone at local to regional scales from
around the world. Ecological Applications, v. 3, n. 3, p.
367-368, 1993. DOI: 10.2307/1941904
RODRIGUES, P. M. S.; SCHAEFER, C. E. G. R.; SILVA,
J. O.; JÚNIOR, W. G. F.; SANTOS, R. M.; NERI, A. V.
The influence of soil on vegetation structure and plant
diversity in different tropical savannic and forest habitats.
Journal of Plant Ecology, v. 11, n. 2, p. 226-236, 2016.
DOI: https://doi.org/10.1093/jpe/rtw135
ROSSI, M.; MATTOS, I. F. A.; COELHO, R. M.; MENK,
J. R. F.; ROCHA, F. T.; PFEIFER, R. M.; DEMARIA, I.
C. Relação solos/vegetação em área natural no Parque
Estadual de Porto Ferreira, São Paulo. Revista do
Instituto Florestal, v. 17, n. 1, p. 45-61, 2005.
SAUER, J. D. Plant migration. The dynamics of geographic
patterning in seed plant species. Berkley: Univesity of
California Press, 1988. 282p.
SCHILTHUIZEN, M. Ecotone: Speciation-prone. Trends
in Ecology & Evolution, v. 15, p. 130-13, 2000. DOI:
https://doi.org/10.1016/S0169-5347(00)01839-5
SCHLUTER, D. The ecology of adaptive radiation.
Oxford: University Press, 2000. 288p.
SHEPHERD, G. J. FITOPAC 2: Manual do usuário.
Departamento de Botânica. UNICAMP, Campinas.
2008. 78p.
SILVA, J. M. C.; BATES, J. M. Biogeographic patterns and
conservation in the South American Cerrado: A Tropical
Savanna Hotspot. Bioscience, v. 52, n. 3, p. 225-233,
2002. DOI: https://doi.org/10.1641/0006-
3568(2002)052[0225:BPACIT]2.0.CO;2
SILVA, L. A.; SOARES, J. J. Composição florística de um
fragmento de floresta estacional semidecídua no
município de São Carlos-SP. Revista Árvore, v. 27, n. 5,
p. 647-656, 2003.
SILVA, E. F. L. P.; SANTOS, J. E.; KAGEYAMA, P. Y.;
HARDT, E. Florística e fitossociologia dos estratos
arbustivo e arbóreo de um remanescente de cerradão em
uma Unidade de Conservação do Estado de São Paulo.
Revista Brasileira de Botânica, v. 27, n. 3, p. 533-544,
2004.
SMITH, T. B.; KARK, S.; SCHNEIDER, C. J.; WAYNE, R.
K.; MORITZ, C. Biodiversity hotspots and beyond: the
need for conserving environmental transitions. Trends
in Ecology and Evolution, v. 16, n. 8, p. 431, 2001.
DOI: https://doi.org/10.1016/S0169-5347(01)02201-7
TEIXEIRA, M. I. J. G.; ARAUJO, A. R. B.; VALERI, S. V.;
RODRIGUES, R. R. Florística e fitossociologia de área
de cerrado S.S. no município de Patrocínio Paulista,
nordeste do Estado de São Paulo. Bragantia, v. 63, n. 1,
p. 1-11, 2004. DOI: https://doi.org/10.1590/S0006-
87052004000100001
The Plant List. 2020. Version 1.1. Published on the Internet;
avaible from: http://www.theplantlist.org/ Accessed on
feb, 2020.
TOLEDO FILHO, D. V.; LEITÃO FILHO, H. F.;
SHEPHERD, G. J. Estrutura fitossociológica da
Vegetação de um Cerrado em Mogi Mirim (SP). Revista
do Instituto Florestal, v. 1, n. 2, p. 1-12, 1989.
TOLEDO FILHO, D. V.; LEITÃO FILHO, H. F.;
BERTONI, J. E. A.; BATISTA, E. A.; PARENTE, P. R.
Composição florística do estrato arbóreo da Reserva
Estadual de Águas da Prata (SP). Revista do Instituto
Florestal, v. 5, n. 2, p. 113-122, 1993.
Tropicos. 2020. Available from: www.tropicos.org. Missouri
Botanical Garden. Accessed: 2020 Feb.
Van der MAAREL, E. On the establishment of plant
community boundaries. Berichte der Deutschen
Botanischen Gesellschaft, v. 89, p. 415-443, 1976.
VIEIRA, M. G. L.; MORAES, J. L.; BERTONI, J. E. A.;
MARTINS, F. R.; ZANDARIN, M. A. Composição
florística e estrutura fitossociológica da vegetação arbórea
do Parque Estadual de Vaçununga, Santa Rita do Passa
Quatro (SP). II-Gleba Capetinga Oeste*. Revista do
Instituto Florestal, v. 1, n. 1, p. 135-159, 1989.
Atlantic Forest meets the Cerrado: floristic, structure and species distribution of an ecotonal tree community
Nativa, Sinop, v. 9, n. 4, p. 471-480, 2021.
480
8. APPENDIX
Appendix 1. Numbers of species reported exclusively in this and
each one of the previous studies. Co: code; Vt: vegetation type; E
ssp.: number of exclusive species; Ssf: seasonal semideciduous
forest; Cd: cerradão; C ss: cerrado sensu stricto.
Apêndice 1. Número de espécies exclusivas entre os estudos
selecionados para a análise de similaridade florística. Co: código; Vt:
Fitofisionomia; E spp: número de espécies exclusivas; Ssf: floresta
estacional semidecidual; Cd: cerradão; C ss: cerrado sensu stricto.
Co
Reference Vt E spp.
A Present study Ecotone 5
B Pinheiro & Monteiro 2008 Ecotone 30
C Gomes et al. 2004 Ecotone 10
D Guilherme & Nakajima 2007 Ecotone 14
E Ribas et al. 2003 Ssf 32
F Bernacci & Leitão 1996 Ssf 21
G Guaratini et al. 2008 Ssf 22
H Bertoni et al. 1988 Ssf 1
I Vieira et al. 1989 Ssf 0
J Ivanauskas et al. 1999 Ssf 16
K Pastore et al. 1992 Ssf 24
L Silva & Soares 2003 Ssf 18
M Toledo Filho et al. 1993 Ssf 20
N Alves et al. 2013 Cd 1
O Batalha & Mantovani, 2001 Cd 6
P Silva et al. 2004 Cd 4
Q Pinheiro & Monteiro 2006 Cd 1
R Toledo Filho et al. 1989 Cd 7
S Costa & Araújo 2001 Cd, C ss 5
T Campos et al. 2006 Cd, C ss 7
Appendix 2. Species occurring in 10 (50%) or more lists among the
compared studies and PFSP. N: number of lists in which the species
occurs.
Appendix 2. Espécies com ocorrência igual ou superior a 10 listas
(50%) entre os estudos selecionados para a análise de similaridade
florística. N: número de listas com ocorrência.
Species N %
Roupala montana Aubl. 18 90
Copaifera langsdorffii Desf. 16 80
Qualea multiflora Mart. 16 80
Tapirira guianensis Aubl. 14 70
Casearia sylvestris Sw. 13 65
Myrcia splendens (Sw.) DC. 13 65
Ocotea corymbosa (Meisn.) Mez 13 65
Vochysia tucanorum Mart. 13 65
Siparuna guianensis Aubl. 12 60
Dimorphandra mollis Benth. 11 55
Lafoensia pacari A.St.-Hil. 11 55
Miconia albicans (Sw.) Triana 11 55
Myrcia tomentosa
(Aubl.) DC. 11 55
Myrsine umbellata Mart. 11 55
Pera glabrata (Schott) Baill. 11 55
Plathymenia reticulata Benth. 11 55
Platypodium elegans Vogel 11 55
Qualea grandiflora Mart. 11 55
Rudgea viburnoides (Cham.) Benth. 11 55
Xylopia aromatica (Lam.) Mart. 11 55
Bowdichia virgilioides Kunth 10 50
Brosimum gaudichaudii Trécul 10 50
Caryocar brasiliense Cambess. 10 50
Croton floribundus Spreng. 10 50
Protium heptaphyllum (Aubl.) Marchand 10 50
Terminalia glabrescens Mart. 10 50
Appendix 3. Numbers of exclusive species among the studies
carried out on ecotonal vegetation. Co: code; Vt: vegetation type; E
ssp.: number of exclusive species; Ssf: seasonal semideciduous
forest; Cd: cerradão; C ss: cerrado sensu stricto.
Apêndice 3. Número de espécies exclusivas entre os estudos
selecionados para a análise de similaridade florística. Co: código; Vt:
fitofisionomia; E spp: número de espécies exclusivas; Ssf: floresta
estacional semidecidual; Cd: cerradão; C ss: cerrado sensu stricto.
Co
REFERENCE Vt E spp.
A Present study Ecotone 18
B Pinheiro & Monteiro 2008 Ecotone 125
C Gomes et al. 2004 Ecotone 30
D Guilherme & Nakajima 2007 Ecotone 46
Appendix 4. Shared species among ecotonal vegetation lists.
Apêndice 4. Espécies compartilhadas nas listas de vegetação
ecotonal.
Species
Casearia sylvestris Sw.
Copaifera langsdorffii Desf.
Dimorphandra mollis Benth.
Myrcia tomentosa (Aubl.) DC.
Myrsine umbellata Mart.
Ocotea corymbosa (Meisn.) Mez
Pera glabrata (Schott) Baill.
Platypodium elegans Vogel
Protium heptaphyllum (Aubl.) Marchand
Qualea grandiflora Mart.
Roupala montana Aubl.
Rudgea viburnoides (Cham.) Benth.
Siparuna guianensis Aubl.
Styrax camporum Pohl
Tapirira guianensis Aubl.
Terminalia glabrescens Mart.
Vochysia tucanorum Mart.
Xylopia aromatica (Lam.) Mart.
Zanthoxylum rhoifolium Lam.