The influence of light quality in the \textit{in vitro} cultivation of \textit{Cattleya crispata} (Thunb.) Van den Berg

Denys Matheus Santana Costa SOUZA¹, Sergio Bruno FERNANDES¹, Letícia Vaz MOLINARI¹, Maria Lopes Martins AVELAR¹, Douglas Santos GONÇALVES¹, Júlio Cezar Tannure FARIA¹, Gustavo Leal TEIXEIRA¹, Gilvano Ebling BRONDANI¹

¹Universidade Federal de Lavras, Lavras, MG, Brasil.

E-mail: gilvano.brondani@ufla.br

DOI: https://doi.org/10.31413/nativa.v9i5.12541

ABSTRACT: Micropropagation technique is a valuable alternative for high quality genetic preservation of endemic species such as the orchid \textit{Cattleya crispata} from “Campo Rupestre Ferruginoso”. This study aims to evaluate the influence of light quality on \textit{in vitro} multiplication and elongation phases, offering new insights on the limiting factors of \textit{C. crispata}. Seeds extracted from capsules were used for inoculation in the culture medium. Four light sources were evaluated for \textit{in vitro} culture, namely: fluorescent lamp, white LEDs, red LEDs and red/blue LEDs. Data about the number of shoots, shoot length, shooting vigor and pigment content were assessed at 90 days of \textit{in vitro} culture. Based on the recorded results, white LEDs are the most suitable ones for \textit{in vitro} multiplication and elongation phases of \textit{C. crispata}. It offers higher quality for seedling production and increases the chances of genetic conservation of the species.

Keywords: ‘Campo Rupestre Ferruginoso’, \textit{in vitro} propagation; wavelength; LEDs.

A qualidade da luminosidade influencia o cultivo \textit{in vitro} de \textit{Cattleya crispata} (Thunb.) Van den Berg

RESUMO: A micropropagação é uma alternativa para a conservação genética de espécies endêmicas do Campo Rupestre Ferruginoso, como a orquídea \textit{Cattleya crispata}, tendo vantagem a maximização da propagação em elevada qualidade. Para solucionar os fatores limitantes ao cultivo \textit{in vitro} de \textit{C. crispata}, o presente trabalho teve como objetivo avaliar a influência da qualidade de luz nas fases de multiplicação e alongamento \textit{in vitro}. Sementes extraídas de cápsulas foram utilizadas para a inoculação em meio de cultura. Avaliaram-se quatro fontes de luz (Lâmpada fluorescente, LEDs branco, LEDs vermelho e LEDs vermelho/azul). Dados referentes ao número, comprimento de brotos, vigor das brotações e conteúdo de pigmentos foram avaliados aos 90 dias de cultivo. Com base nos resultados obtidos, pode-se inferir que LEDs branco é mais adequada para ser utilizada nas fases de multiplicação e alongamento \textit{in vitro} de \textit{C. crispata}, sendo uma alternativa para a produção de mudas e conservação genética.

Palavras-chave: Campo Rupestre Ferruginoso; propagação \textit{in vitro}; comprimento de onda; LEDs.

1. INTRODUCTION

The Orchidaceae family has many Angiosperms that belong to the Asparagales order, which comprises approximately 24,500 species distributed within 800 genera (CHASE et al., 2015). Brazil holds a great diversity of orchids. It has approximately 239 genera and 2,553 species; 1,636 of them are endemic (Van den BERG, 2008). Some of those are treasured commercial flowers, but the downside is that their production and understanding the limiting factors of each are compromised by slow growth and mutualistic interactions with insects and microorganisms, because of pollination or germination (MASSARO et al., 2018). Micropropagation is an alternative to the genetic conservation and multiplication of \textit{Cattleya crispata} since thousands of plants can be produced from a single propagule. Micropropagation allows genetic gain fixation in clonal populations and maximizes plant high-quality propagation within a small physical space and in a short period-of-time, regardless of limiting climatic factors (TRUEMAN et al., 2018; ABIRI et al., 2020).

There is an obvious need for studies on seedling production and understanding the limiting factors of each in
vitro culture phase of *C. crispata*. Innovations in the culture environment, such as light quality from light emitting diodes (LEDs), stood out among several technologies that have been proposed to improve micropropagation processes (FARIA et al., 2019; RIBEIRO et al., 2019). Studies have indicated that blue (450 – 495 nm), red (620 – 750 nm), extra red (750 – 850 nm) and green lights (495 – 570 nm) influence *in vitro* morphogenesis and plant development (Batista et al., 2018). Micropropagation studies and research on the effects of the different LED wavelengths on the yet non-existing morphogenesis and growth processes have been carried out.

The development of specific micropropagation methods is of paramount importance, given the need for genetic conservation of *C. crispata* species. Thus, the aim of the present study was evaluating the effect of light quality on *in vitro* multiplication and elongation.

2. MATERIAL AND METHODS

2.1. Study site and experimental material

Experiments were conducted at the Laboratory of Tissue Culture of the Agriculture Department of the Federal University of Lavras – UFLA, Lavras – MG, Brazil. The material used for the generation of explants resulted from seeds extracted from mature *Cattleya crispata* capsules, which were provided by the GERDAU Açominas S.A. company, Ouro Branco – MG, Brazil.

2.2. *In vitro* establishment

Seeds were washed in running water and immersed in a solution with 2.4 g L\(^{-1}\) of Orthoide 500® (Capton 50%) was used as active ingredient) for 15 minutes. Next, they were washed five times in autoclaved deionized water and immersed in 70% hydroalcoholic solution (v/v) for 20 seconds, under constant stirring, in horizontal laminar flow chamber. Subsequently, seeds were washed five times in autoclaved deionized water and inoculated under aseptic conditions in test tubes (25 × 150 mm) added with 10 mL of culture medium.

The basic culture medium of the experiments was a MS saline formulation (MURASHIGE & SKOOG 1962) added with 30 g L\(^{-1}\) sucrose (Synth Ltda), 6 g L\(^{-1}\) agar (Merck S.A.) and 1 g L\(^{-1}\) activated charcoal (Merck S.A.). Culture medium pH was adjusted to 5.8 ± 0.05, prior to agar addition. Culture medium autoclaving was carried out at 127°C under pressure scale and photo-synthetic ink content were collected at 90 days of culture.

2.3. Multiplication

Four shoots (standardized at 0.5cm) were prepared and inoculated under aseptic conditions in glass flasks (250 mL capacity) added with 50 mL of MS basic culture medium supplemented with 0.5 mg L\(^{-1}\) BAP (6-benzylaminopurine – Sigma®), 0.05 mg L\(^{-1}\) ANA (α-naphthalene acetic acid – Sigma®), 6 g L\(^{-1}\) agar and 1 g L\(^{-1}\) activated charcoal after seed germination and *in vitro* establishment, at 90 days of culture.

The experiment followed a randomized design, under four different light sources: fluorescent lamp - F/L (HO Sylvania T12, 110 W, São Paulo, Brazil), White-LEDs – W/L (SMD 100, 18 W, Vilux®, Vitória, ES, Brazil), Red LEDs – R/L (LabPARLL-HR / DB-480, 11.6 W, LabLumens®), Carapicuíba, SP, Brazil) and 1:1 red/blue LEDs – RB/L. (LabPARLL-HR / DB-480, 11.6 W, LabLumens®, Carapicuíba, SP, Brazil), with eight repetitions (composed of four explants, each).

The mean number of shoots per explant (> 0.5 cm), shoots length (> 0.5 cm), vigor based on the scores scale proposed by Souza et al. (2020a) (Figure 1A-C) and the photo-synthetic ink content were assessed at 90 days of culture.

2.4. Elongation

Shoots produced in the *in vitro* multiplication phase were prepared; four shoots (standardized at 0.5cm) were isolated and inoculated (under aseptic conditions) in glass flasks (250 mL capacity). Each flask was added with 50 mL of MS culture medium, 30 g L\(^{-1}\) sucrose, 6 g L\(^{-1}\) agar 1 g L\(^{-1}\) activated charcoal, 0.05 mg L\(^{-1}\) BAP and 0.5 mg L\(^{-1}\) indole-3-butyric acid (AIB) (Sigma®).

The experiment followed a randomized design, under four different light sources: Fluorescent lamp F/L, LED lamp white W/L, LED lamp red R/L and LED lamp red/blue RB/L 1:1, with eight repetitions (composed of four explants, each).

Data about the mean number of shoots per explant (> 0.5 cm), shoot length (> 0.5 cm), vigor based on the scores scale and photo-synthetic ink content were collected at 90 days of culture.

2.5. Quality of light

A Spectrum radiometer (Ocean Optics Spectra-Suite) was used for the analyzes of variations in the absolute irradiance (μW cm\(^{-2}\) nm\(^{-1}\)) and light wavelength (nm) of different lamp types during the *in vitro* multiplication and elongation phases. It was done to plot the graphics of different light spectra (Figure 2).

2.6. Photosynthetic pigment analysis

Leaf discs (25 mg of leaf fresh matter) were sampled from shooting for *in vitro* multiplication and elongation assays, after 90 days of culture, under different light sources. Samples were inoculated with 5 mL of DMSO solution (Sigma Aldrich®) and stored for 48 hours in the dark (LICHENTHALER, 1987). Sample absorbance was determined in triplicate, in 10 mm optical path quartz cuvette, in Genesis 10UV spectrophotometer (ThermoScientific®, EUA).
The influence of light quality in the *in vitro* cultivation of *Cattleya crispata*

3. RESULTS

3.1. Quality of light on *in vitro* multiplication

Different qualities of light influenced the number of shoots per explant and led to the highest means under sources W/L (4.0 shoots) and F/L (3.7 shoots); results were statistically different (*p* < 0.05) under sources R/L and RB/L (Figure 3A). Shoots length presented similar behavior: the best results were recorded for sources W/L (2.74 cm, on average) and F/L (2.44 cm, on average), which recorded values different from those recorded under sources R/L and RB/L (Figure 3B).

3.2. Quality of light on *in vitro* elongation

A difference in responses between light sources and the growth pattern of *C. crispata* plants in the *in vitro* multiplication phase was observed. W/L presented the lowest means of explant vigor (1.12) based on the scores scale; this result was significantly different (*p* < 0.05) under light sources R/L and RB/L (Figure 3C). Regarding the content of photosynthetic pigments, the amount of chlorophyll *a*, *b*, *a + b* and carotenoids were influenced by different light qualities (Figure 3D). The results showed that the light sources W / L and F / L had the highest levels of photosynthetic ink.

2.7. Data analysis

The analyses were carried out in R Core Team software, 2018, with the aid of the ExpDes Package, version 1.1.2 (FERREIRA et al., 2013). Data were subjected to analysis of variance (ANOVA) with Tukey test at 5% significance level.
and elongation phases at 90 days of culture (Figure 5) was observed. Based on the quality of the analyzed lights, F/L stood out for producing the largest number of shoots (3.68 shoots, on average, Figure 4A), which was statistically different from that recorded for the other treatments \((p < 0.05)\). However, the lowest shoots production mean was observed under light source RB/L (2.0 shoots).

For the shoots length, the best results were under light source W/L (4.43 cm, on average) (Figure 4B). Regarding explant vigor, the lowest mean values based on the score scale were observed under W/L (1.12) (Figure 4C), which led to tissue growth due to lack of nutritional deficit.

The best ink content results were those recorded under light source W/L (Figure 4D); this outcome evidenced the importance of using light-emitting diodes (LEDs) that present greater wavelength specificities.

Based on the evaluated characteristics, it was possible to observe difference in the growth pattern of \(C.\) crispata explants through different light qualities used for \textit{in vitro} multiplication and elongation at 90 days (Figure 5).

Figure 4. Features observed at 90 days of \textit{in vitro} elongation phase of \textit{Cattleya crispata} due to different qualities of light (F/L) fluorescent lamp, white LEDs (W/L), red LEDs (R/L), and red/blue LEDs (RB/L)). A. Mean number of shoots per explant; B. Mean shoots length; C. Vigor; D. Mean ink content. *Means followed by the same letter did not differ from each other in the Tukey test at 5% significance level. Bars represent the sample standard deviation.

Figure 5. Explants of orchids from the species \textit{Cattleya crispata} under different qualities of light at 90 days of culture. A-D. \textit{In vitro} multiplication; E-H. \textit{In vitro} elongation; A and E. Fluorescent lamp; B and F. White LEDs; C and G. Red LEDs; D and H. red/blue LEDs. Bars = 1.0 cm.
4. DISCUSSION
4.1. Quality of light on in vitro multiplication

The improvement of protocols for in vitro multiplication that influences the development of micropropagation, were studied with the attempt to establish cultivation conditions that can maximize the production of clonal seedlings on a large scale. The results of the morphological characteristics evaluated with the orchid C. crispata, provided the optimization of the in vitro multiplication phase, through the use of light quality.

Treatment with white LED light quality provided the best results for number of shoots per explant, shoot length and vigor after 90 days of cultivation. Data in the literature corroborated the current results, since the use of white LEDs on the orchid species Microadula lundii (FAVETA et al., 2017) and Corymbia torelliana × C. citriodora (SOUZA et al., 2020b) favored the largest number of and longest shoots. On the other hand, the smallest number and shortest length of explants from Ajuga multiflora were recorded under red/blue LED light (BYOUNG; IYYAKANNU, 2018).

These results are also in line with those found by Souza et al. (2020b), who observed adequate explant vigor of Corymbia torelliana × C. citriodora. According to Abiri et al. (2020), the success of the multiplication phase requires explants for the emission of shoots free from contamination and with adequate vegetative vigor.

Light quality control on in vitro culture under LED light sources is essential for photosynthetic rate optimization, a fact that contributes to the growth and increase of shoots production (SILVA et al., 2017). However, light can also influence the concentration of growth regulators by acting as a morphogenic sign to shoots proliferation during the in vitro multiplication. The initial phases in the light-induced signaling involve the activation of cytokinins (ROMAN et al., 2016), which may be beneficial for shoots production.

For the content of photosynthetic pigments (chlorophyll a, b a+b and carotenoids), the highest values were observed in light of white LEDs. Similar results were observed in Bixa orellana cultivar UESB74 under white LEDs (FARIA et al., 2019). The biosynthesis of chlorophyll a, b and of carotenoids was influenced by the quality and intensity of the emitted light. The photosynthetic process presented the highest efficiency, mainly when the light source with the greatest wavelength specificity was adopted (GUPTA; KARMAKAR, 2017).

4.2. Quality of light on in vitro elongation

The specificity of the light quality fluorescent and white provided the best results for the morphological characteristics studied in the in vitro elongation. Similar results were observed when fluorescent light was the light source provided to Abies borsii-regis regis explants (SMIRNAKOU et al., 2016).

In contrast, it was observed that the use of light quality red and red blue is inadequate. The blue region of the light spectrum (450 to 500 nm) can act in growth and productivity inhibition (Abiri et al., 2020).

Wavelengths in LED light sources have a specific action in plants, they influence different factors in plants’ photosynthetic processes, morphogenesis, and physiological processes (HE et al., 2017). LED light sources can be used separately, or in combination, for the optimization of morphophysiological processes (SHENGXIN et al., 2016).

However, it is important to highlight that light wavelength has varying responses according to the genotype (MIRANDA et al., 2020); therefore, adjustments are necessary for each species and/or genotype.

As for the content of photosynthetic pigments, the highest values were also observed for fluorescent light sources and white LEDs. Ink content in Fagus sylvatica tataricum explants exposed to white LED was higher than that recorded for plants treated with blue and red LEDs (TUAN et al. 2013).

LEDs performance has increased the amount of chlorophyll and carotenoids and the photosynthetic growth ability of certain species (SOUZA et al. 2020a). Carotenoids play an important role in photosynthesis since they protect the photosystem from photo-oxidation. However, the effects of different light wavelengths on carotenoid biosynthesis may depend on the assessed tissues and plants (TIAN et al. 2019).

Given the above, it is important to note that light emitting diodes (LEDs) are alternative light sources, given their wavelength specificities, a moderate amount of thermal emission, little degradation and long service life. These characteristics favor in vitro culture and reduce costs compared to fluorescent lamps (BUGBEE, 2016). Therefore, LEDs are an excellent alternative in plant tissue culture.

5. CONCLUSION

LEDs presented the best results for in vitro multiplication and elongation of Cattleya crispata also leading to greater vigor, longer shoots, a larger mean number of shoots per explant, and higher photosynthetic ink content. This finding turns LED into an alternative to seedling production and the genetic conservation of the species.

6. ACKNOWLEDGMENTS

We are grateful to “Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)” for the granted scholarships. The present study was carried out with the support of “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)” and “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)”. We also thank GERDAU Açominas S. A.

7. REFERENCES

The influence of light quality in the *in vitro* cultivation of *Cattleya crispata*

Van den BERG, C. Reaching a compromise between conflicting nuclear and plastid phylogenetic trees: a new classification for the genus *Cattleya* (Epidendreae; Epidendroideae; Orchidaceae). *Phytotaxa*, v. 186, p. 75-86, 2014. DOI: http://dx.doi.org/10.11646/phytotaxa.186.2.2