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ABSTRACT 
South Naghadeh is abundant in intrusive rocks. The region is part of Laramide magmatism in 
the Sanandaj–Sirjan zone and, from a petrological point of view, consists of syenogranite and 
monzogranite, granodiorite, quartz diorite, quartz monzodiorite, quartz monzonite, quartz 
syenite, and olivine gabbro. Available textures in local granitoid rocks include granular, 
granophyric, graphic, perthitic, and myrmekitic. The textures represent the formation 
conditions of the minerals, their layout in the rocks, and their physiochemical 
transformations during or after crystallization. The textures of local plutonic rocks (such as 
perthitic and granophyric) and lack of metasomatic aureoles and primary biotite are 
suggestive of high water vapor pressure and low emplacement depth of these rocks. The 
corona texture found in olivine gabbros was of the magmatic type. 
Keywords: Intrusive Rocks; Texture Typology; Sanandaj–Sirjan Zone; Naghadeh; Iran. 
 
RESUMO 
Naghadeh do Sul é abundante em rochas intrusivas. A região faz parte do magmatismo de 
Laramide na zona Sanandaj – Sirjan e, do ponto de vista petrológico, consiste em 
sienogranito e monzogranito, granodiorito, diorito de quartzo, monzodiorito de quartzo, 
monzonita de quartzo, sienito de quartzo e gabro de olivina. As texturas disponíveis nas 
rochas granitóides locais incluem granular, granófico, gráfico, perthitic e mirmekitic. As 
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texturas representam as condições de formação dos minerais, sua disposição nas rochas e 
suas transformações físico-químicas durante ou após a cristalização. As texturas das rochas 
plutônicas locais (como perthitic e granophyric) e a falta de auréolas metasomáticas e biotita 
primária são sugestivas de alta pressão de vapor de água e baixa profundidade de colocação 
dessas rochas. A textura corona encontrada nos gabros de olivina era do tipo magmático. 
Palavras-chave: Rochas Intrusivas; Tipologia de Texturas; Zona Sanandaj – Sirjan; 
Naghadeh; Irã. 

INTRODUCTION 

Granitoid microstructures are classified into three main groups, namely magmatic, 

sub-magmatic, and solid-state (Blekinsop, 2000; Passchier et al., 1998; 2005; Vernon, 2000, 

2004). Further, granitoid rock textures are categorized into primary and secondary textures, 

with the former including granitic (granular), granophyric, graphic, and poikilitic textures, 

and the latter perthitic and myrmekitic textures. Myrmekite intergrowth is a solid-state 

microstructure for which several formation mechanisms have been proposed. This 

symplectic intergrowth occurs in plagioclase and vermicular quartz in massive and 

metamorphic granitoids, as well as metapelites, migmatites, aplites, and pegmatites 

(Menegon et al., 2006; Mobashergermi et al., 2018; Nazemi et al., 2019). In the granophyric 

texture, quartz crystals grow in a branching (cuneiform-like) configuration out of an 

orthoclase matrix (Best and Christiansen, 2001; Vernon, 2004; Baratian et al., 2018, Yazdi et 

al., 2019a; 2019b, Zadmehr et al., 2019). Graphic intergrowth is similar to but coarser than 

the granophyric type and contains more sodium or potassium-rich feldspar than 

intermediate compounds (Barker, 1970). Textural evidence shows, at most, two corona 

textures can form during magma solidification or under subsolidus conditions, which are 

referred to as magmatic corona and subsolidus corona, respectively. Sub-magmatic 

microstructures in granites include quartz, biotite, and chlorite-filled fractures in plagioclase 

phenocrysts. Undulose extinction of quartz with its surrounding recrystallized grains in 

granite rocks is considered a sub-magmatic–solid-state microstructure. Temperature rise and 
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presence of fluids, particularly water, are highly significant in the formation of corona (Lang 

et al., 2004). 

GEOLOGY OF THE REGION 

Located 7 km south of Naghadeh, 30 km east of Pianshahr, and 39 km west of 

Mahabad, the study region occupies 1200 sq. km. The area is located at 36°30’–37°00’ N and 

45°15’–45°30’ E. This region is located east of the Naghadeh 1:100000 sheet (Figure 1). The 

oldest rock outcrops in the region include a collection of metasomatic rocks with greenschist 

facies and traces of igneous rock, forming the core of an anticline 10 km east of Naghadeh, 

along the Piranshahr road. The Cambrian deposits topping the said collection include Barut, 

Lalon, and Mila formations. Permian carbonate deposits were pushed above the said 

younger deposits by thrust faults. The large stratigraphic gaps date back to the Ordovician, 

Silurian, Devonian, and Carboniferous, while no trace of deposits from these periods is found 

in the region. That is all the while dolomites, and dolomite limestones of The Ruteh 

Formation from The Permian exhibit a wide spread, although, the bases of rocks from this 

period do not usually crop out. Cretaceous rocks are abundant in the area, spreading mainly 

across the southern parts of the study region. The Cretaceous sequence comprises green to 

gray shales and gray limestone. Based on the positioning of the upper and lower formations, 

the sequence belongs to a period from the Lower Cretaceous to the Late Cretaceous, but 

only evidence of the latter can be found in the study region. The broadest Cretaceous unit in 

the region is the one corresponding to the Late Cretaceous that holds shale and gray, slate, 

schist, and mica sandstones with pen erosion and thick and thin limestone strata in most 

areas. 
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Figure 1. The study region in the structural zoning map of Iran. 
Source: Gile et al. (2006) 

 

PETROGRAPHY 

Following extensive field investigations and thorough sampling of different 

petrological units of intrusive rocks, more than 130 microscope thin sections were prepared 

for investigation. After determining the quartz and alkali and plagioclase feldspars contents 

and bringing them up to scale for a sum of 100%, the Streckeisen diagram was used to name 

them (Figure 2). 
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Figure 2. Typology of local intrusive rocks based on their modal compositions. 
Source: Authors (2020). 

 

SYENOGRANITES AND MONZOGRANITES 

Granular, graphic, vein perthite, and secondary textures (resulting from alteration) 

are found in the specimens (Figure 3 a-f and Figure 4a-c), and plagioclase crystals have mostly 

become subautomorphic and sericitic. Carlsbad twinning and polysynthetic with oscillatory 

zoning exist in plagioclases, and chessboard (tartan) twinning is present in microclines. The 

essential mineral constituents, in order of abundance, are quartz (15–35%), potassium 

feldspar (20–45%), plagioclase (25–40%), and amphibole and its accessory minerals 

including sphene, zircon, apatite, biotite, and opaque minerals (primary and secondary) (Figs. 

3a and b). Further, sericite, iron oxide (hematite), and chlorite can be mentioned as 

secondary minerals. The presence of microcline twinning in most orthoclase crystals can be 

suggestive of their solid-state metamorphism (Eggleton, 1979, Bouchez et al., 1992; Eggleton, 

Buseck, 1980; Dabiri et al., 2018). Orthoclase crystallizes in the monoclinic system, which 

changes to triclinic under stress. The switch in crystallization system from monoclinic to 

triclinic creates albite and pericline twinning in orthoclase (Fitzgerald, McLaren, 1982). 
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Most granites contain quartz crystals and two separately-grown feldspars, which is a 

consequence of gradual growth under equilibrium and high water pressure. That is, the high 

water pressure prevents the formation of a solid solution in alkali feldspars. However, near 

the surface, granites are substituted and crystallize quicker at a lower water pressure. 

Therefore, some solution forms in their alkali feldspars, leading to the crystallization of 

quartz and feldspar. With the volatile substances leaving, the liquidus and solidus curves rise 

and the cooling proceeds relatively rapidly. In this case, crystals do not spread separately and 

independently, but the simultaneous growth of quartz and alkali feldspar enables fine 

intergrowth. Fine intergrowth often takes place in existing phenocrysts resulting from slow 

cooling or pre-eutectic crystallization. The intergrowth takes the configuration of radial or 

branching quartz particles in a feldspar single-crystal (Shelley, 1993). In other words, with 

reduced water pressure, perthitic textures form in feldspars and fine grains between quartz 

and alkali feldspar. 

GRANODIORITES 

These rocks are less abundant than the others in the region. The light minerals of 

these rocks, including plagioclase (30–45%), quartz (10–25%), and potassium feldspar (10–

30%) are scarce, and the accessory minerals include biotite, amphibole, sphene, and opaque. 

Chlorite, epidote, and sericite are secondary minerals, featuring subhedral granular (semi-

formed grains), poikilitic, and graphic microtextures. Further, secondary textures also exist 

in these rocks due to alteration (Figure 3e). 

QUARTZ MONZONITES 

The granular texture is dominant in these rocks, but porphyritic, granophyric, and 

porphyritic also exist to some extent. The abundance of the plagioclase content was found 

to be 25–45%, alkali feldspar 50–50%, and quartz around 10–20%. Hornblende, at an 

abundance of 5–30%, and pyroxene, at 10–20%, are also found in the rocks. Apatite, sphene, 

and opaque minerals constitute the accessory minerals, whereas sericite, chlorite, epidote, 
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and calcite are secondary minerals (Fig. 3e). In some plagioclases, the mineral transforms to 

sericite and epidote at the core but not on the edges, which can be attributed to the calcic 

nature of the mineral core, showing the regular zoning (Fig. 4a). Regular zoning is often 

suggestive of the slower rate of reaching equilibrium in the plagioclase system, relative to 

the crystallization rate. Given the fact that the Al/Si ratio regularly changes in the plagioclase, 

it does not react easily with lava (Shelley, 1993). Formation of zones in plagioclase can be 

due to two main reasons: a) plagioclase crystallization from a melt with shifting temperature, 

water vapor pressure, and composition (Humphreys et al., 2006), and b) increased growth 

rate at the crystal–melt interface in response to equilibrium conditions (kinetic model) 

(Ginibre et al., 2002a). In terms of dimensions, zones are classified into Coarse-Scale 

Oscillatory Zones (COZ) and Fine-Scale Oscillatory Zones (FOZ), and the former is the case 

with quartz monzonites. 

In the shallow depth of the magma reservoir, magma is affected by dynamic 

activities, including convection or intrusion of hot, calcium-rich magma or both. 

Consequently, such textures as the fine sieve texture, zoning, and dissolution surfaces form 

separately around the rims of existing crystals (Singer et al. 1995). In the case of an extended 

arrest of crystal in the melt, a composition equilibrium is often established between 

plagioclase and magma without zoning. Zoning is indicative of a small rate of equilibrium 

compared to the rate of crystallization (Shelley, 1993). In some cases, alteration has taken 

place around or close to the edges of plagioclase (Fig. 4b). Most researchers, including 

Nixcon et al. (1987), turn to magma mixing, attributing the dissolved and reactive plagioclase 

edges to this phenomenon. Others, including Loomis (1982), on the other hand, raise volatile 

substances and oxygen fugacity variations in this regard. 

 

QUARTZ SYENITES 
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Granular and poikilitic are the main textures in these rocks. Plagioclase content was 

found to be 20–25%, alkali feldspar 55%, and quartz around 10-15%. The hornblende content 

was also 10% with an approximate size range of 0.2–2 mm. Apatite, sphene, and opaque 

minerals constitute the accessory minerals, whereas sericite, chlorite, epidote, and calcite 

are secondary minerals. 

QUARTZ MONZODIORITES 

These rocks are holocrystalline with fine to average grains and contain hornblende 

and feldspar minerals. In microscope sections, the porphyritic, intergranular, and granular 

(average to coarse grains) textures are dominant, but the poikilitic texture is also found. 

Essential minerals include plagioclase (30–55%), alkali feldspar (10–30%), hornblende (15–

20%), and quartz (under 10%). Accessory minerals include pyroxene, apatite, and opaque 

minerals, whereas sphene, chlorite, epidote, sericite, and clay minerals are secondary 

minerals (Figure 3e). 

QUARTZ DIORITES 

The most notable textures in local diorites are granular and microgranular and 

secondary textures resulting from deuteric alteration. Fine plagioclase crystals are found, on 

average, with an abundance of 45–55% in diorites and are in the labradorite range based on 

the extinction angle. Fine crystalline acicular microlites are scattered in the matrices of 

specimens with a porphyritic texture. At less than 10%, quartz fills the space between coarse 

plagioclase crystals. In some specimens, amphiboles contain opaque mineral inclusions and 

form a poikilitic texture. Augite is often found as a semi-formed to formed mineral, and 

secondary minerals include chlorite, epidote, sericite, and clay minerals. Some specimens 

contain 5–10% olivine. 

 

 

OLIVINE GABBRO 



Revista Geoaraguaia 
ISSN:2236-9716 

Barra do Garças – MT 
v.10, n. esp. Geologia e 

Pedologia p.56-79. Dez-2020 
 
 

 
 

Revista Geoaraguaia – ISSN: 2236-9716 – V.10 n. Especial Geologia e Pedologia. Dez-2020 
64 

These rocks often feature a granular to intergranular texture, as well as corona and 

poikilitic in some cases. The essential minerals in these rocks are plagioclase (40–55%), 

pyroxene (15–35%), and olivine (10–20%). The plagioclase composition is often of the 

anorthite type (40–55%) with sieve textures. Accessory minerals include apatite and opaque 

minerals, whereas chlorite, sericite, and clay minerals are the secondary minerals. Sieve 

textures form by either of two causes: 

1. During pressure reduction processes (Nelson, Montana, 1992), the water-saturated 

magma rapidly rises to shallower depths, increasing the vapor pressure, reducing the 

stability of plagioclase crystals, and leading to the dissolution of crystals (Blundy, 

Cashman, 2005; Ashrafi et al., 2018). The pits are then filled by melt and remain 

entrained in the crystal after recrystallization, forming the sieve texture. The sieve 

texture resulting from the process is coarse (Nelson, Montana, 1992). Steward and 

Pearce (2004) believe that the instabilities of the plagioclase crystals during the rapid 

ascent of magma creates the sieve texture. They attribute the outcome to the fact that 

the plagioclase melts partially, and the melting products crystallize within the crystal. 

Depending on whether the cooling rate is low or high, the products can crystallize in 

glass form or as secondary plagioclase in the initial plagioclase, creating the sieve 

texture. 

2. Magma mixes or reacts with extremely hot, calcium-rich melt (Tsuchiyama, 1985). This 

mixing with the melt in the magma reservoir takes place at shallower depths, during 

which phenocrysts experience partial dissolution (Tsuchiyama, 1985). After partial 

dissolution, crystals react with the melt, reaching an equilibrium under the new 

conditions, and resulting in recrystallization. This process results in fine sieves, and 

studies show anorthite-rich plagioclase crystallizes at high temperature, under low 

pressure, and from a melt with high Ca/Na, Al/Si, and Ca/Al content and low water 

content (Nelson, Montana, 1992; Blundy, Cashman, 2005). 
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Figure 3. (a) a schematic of microcline with chessboard (tartan) twinning in monzogranite; (b) Granular and 
myrmekitic texture in monzogranite; (c) Granular and myrmekitic texture in syenogranite; (d) Granular and 
chloritized hornblende in syenogranite; (e) Granular and poikilitic textures in granodiorite; (f) Granular and 

myrmekitic textures in plagioclase in quartz monzonite. 
Source: Authors (2020). 

 

TEXTURE TYPOLOGY  

a b 

c d 
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Overall, the most notable textures found in local rocks can be classified into two 

groups. 

a) Primary textures: Granular, granophyric, graphic, and poikilitic. 

b) Secondary textures: Perthitic, myrmekitic, and corona. 

a.1) Granitic Texture 

 This texture is the final stage of mineral cohesion and involves a mix of minerals of 

roughly the same sizes and shapes with planar, formed, and amorphous shapes joining 

together at the end of crystallization (Shelley, 1993) (Figure 3a). 

a.2) Granophyric Texture 

 The texture is the result of the simultaneous and irregular growth of quartz and 

orthoclase (Figure 4b). In the texture, quartz crystals grow in a branching (cuneiform-like) 

configuration out of an orthoclase matrix (Best, Christiansen, 2001; Vernon, 2004). In this 

texture, relatively euhedral alkali feldspar crystals grow in a thick granite melt, and as the 

melt is enriched with silica and alkali elements, quartz–feldspar intergrowth develops around 

them (Best, Christiansen, 2001;). 

Quartz is mostly dendritic in this texture and forms at—relatively—low temperature 

(around 650 °C), when the water content of magma is low due to rapid nucleation (Vernon, 

2004; Tarabi et al., 2019).  

Different theories have been proposed regarding the formation of this texture. Vogt 

(1930) and Smith (1974) attribute the granophyric texture to the cotectic crystallization of 

quartz and alkali feldspar. In other words, the said texture is a primary texture in granitoid 

rocks that has solidified in a shallow depth (Best, Christiansen, 2001; Vernon, 2004; Dunhum, 

1965; Hughes, 2003; Gholizadeh et al., 2016; Yazdi et al., 2017). The texture can be a product 

of subsolvus magma crystallization in the Qz-Ab-Or system on the cotectic line. Put 

differently, the high content of liquids is the reason for such intergrowth (Shelley, 1993). The 

formation mechanism of the granophyric texture is explained by feldspar nucleation as 
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temperature decreases. The initial growth of feldspar creates a fluid supersaturated with 

silica and rich in H2O. In the process, skeletal feldspar forms and quartz fills the spaces 

between feldspars (Shelley, 1993). 

a.3) Graphic Texture 

Graphic intergrowth is similar to the granophyric type. The denomination of this 

texture is inspired by the resemblance of intertwined quartz branches to hieroglyphs or 

cuneiform symbols. Graphic intergrowth is coarser than granophyric and contains more 

sodium or potassium-rich feldspar than intermediate compounds (Barker, 1970). The 

intergrowth is often found in granite pegmatites and forms when liquids are present in ample 

quantities. However, it can also be the result of primary feldspar crystallization and the 

kinetic effect of the growth process on the system (Fenn, 1974) (Figure 4c).  

a.4) Poikilitic Texture 

 The poikilitic texture was found in the rocks of the study region. Given the presence 

of hydrous minerals in the area, the water vapor pressure and the rapid pressure drop have 

contributed to the formation of the poikilitic texture. Magma mixing (Tsuchiyama, 1985) and 

liquid intrusion into the magma reservoir in large quantities are also effective in the 

formation of this texture. According to Hogan and Gilbert (1995), the poikilitic texture in 

minerals is the result of an adiabatic pressure drop in the magma (Figure 4d). 
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Figure 4. (a) perthitic texture with carlsbad twinning in granodiorite; (b) granophyric texture in quartz 
monzonite; (c) graphic texture in granodiorite; (d) poikilitic texture in olivine gabbro. 

Source: Authors (2020). 

 

SECONDARY TEXTURES 

Besides the above-mentioned primary textures, secondary textures are also found 

in granitoid rocks and can be classified into the following three general groups (Shelley, 1993): 

1. Textures appearing during cooling or late-stage metasomatism that do not result in 

considerable changes in the mineralogy. This group includes perthite in potassium 

feldspar, which is an expansion of material exchange at the potassium feldspar–

myrmekitic interface. Perthitic and myrmekitic textures can be found in thin 

sections of local rocks; 

a b 

c d 
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2. Textures forming due to deuteric or hydrothermal activities and transform the 

primary minerals. This group includes sericitization, saussuritization, epidotization, 

and kaolinization alteration, which are commonly found in sections; 

3. Textures indicating strain during deformation; 

b.1) Perthitic Texture 

The perthitic texture is a characteristic of the granites in the study region (Figure 4a). 

This texture is the result of the immiscibility of sodium and potassium-rich phases in alkali 

feldspar. Some physical and chemical factors are also effective in perthite formation. These 

factors include fluid pressure (such as water vapor, carbon dioxide), temperature, and the 

depth of magma. Parsons and Brown (1984) attribute coarser perthites to more recent 

hydrothermal activities at below 400 °C. However, some researchers ascribe coarse perthites 

to replacement activities (Smith, Brown, 1988). Furthermore, the tectonic strain may result 

in immiscibility, affecting the preferential orientation of perthite blades. In most coarse 

perthites, mutual replacement takes place in closed systems; that is, perthites coarsen 

without suffering a drastic transformation in the chemical composition. On the other hand, 

clear chemical changes take place in an open system that lead to the formation of coarse 

perthite in pegmatites (Martine et al., 1995). The solvus line of feldspars can be used in the 

thermometry of perthitic rocks (Kretz, 1994). Based on the crystallization and exsolution 

curves of alkali feldspar, the solidification temperature of alkali feldspar (TS) in local granite 

rocks, at 1–2 kbar pressure, was estimated at 850–900 °C, and perthite formation 

temperature (Tx) at 650 °C (Figure 5). 
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Figure 5. The binary potassium and sodium feldspar system under 1 atm dry pressure and different wet 
pressures. 

Source: Tuttle and Bowen (1958). 
 

b.2) Myrmekitic Texture 

Myrmekitic is the branched intergrowth of quartz in plagioclase. Myrmekitics grow 

from grain boundaries into the grain, replacing feldspar. Accordingly, fully-crystalline 

plagioclase develops an onion-like appearance. Two processes have been proposed by 

researchers for myrmekite formation: 1. Solid-state replacement with deformation 

(Ahadnejad et al. 2011). 2. Magmatic origin. In the second case, two types of myrmekite are 

formed (Vernon, 1991), namely rim myrmekite, developing between potassium feldspar and 

plagioclase, and granular myrmekite, which resembles a bleb between adjacent potassium 

feldspar grains. Since it was first described by Michel Lévy (1874), myrmekite has been 

explained by several theories. Phillips (1974) classified these theories into six groups. 

1. Simultaneous or direct crystallization: One of the oldest theories, ascribing the 

formation of myrmekite to the simultaneous crystallization of quartz and plagioclase 

from the same melt (Spencer, 1983). 



Revista Geoaraguaia 
ISSN:2236-9716 

Barra do Garças – MT 
v.10, n. esp. Geologia e 

Pedologia p.56-79. Dez-2020 
 
 

 
 

Revista Geoaraguaia – ISSN: 2236-9716 – V.10 n. Especial Geologia e Pedologia. Dez-2020 
71 

2.  Plagioclase replacement by potassium feldspar: The following reactions can represent 

subsolidus potassium feldspar replacement. 

(orthoclase) KA1Si308+Na+ = NaAlSi308(albite) + k+ 

(orthoclase) KA1Si308+Ca2+ = CaA12Si2O8 (anorthite)+ 4S2O +2k+ 

The constitutes of the albite and anorthite solid solutions form sodic plagioclase and 

silica waste in the form of vermicular quartz. The model may explain rim myrmekite 

3. Potassium feldspar replacement by plagioclase: According to this hypothesis, 

myrmekite is part of a reaction where plagioclase is replaced by potassium feldspar 

under metasomatic conditions. The replacement requires additional silica in potassium 

feldspar, which was used in myrmekite to replace potassium feldspar. The development 

of vermicular quartz in the adjacent potassium feldspar supplies the SiO2 required by 

the plagioclase replaced by potassium feldspar.  

4. Solid-state exsolution: The hypothesis does not explain the albite-rich composition of 

myrmekitic plagioclase and also fails to elucidate the development of myrmekite in 

between plagioclase and potassium feldspar.formation but fails to do so for granular 

myrmekite (Phillips, 1974); 

5. Inclusion of recrystallized quartz in albite exsolved from growing potassium feldspar. 

The hypothesis assumes the incorporation of recrystallized quartz in growing albite 

(Shelley, 1964). The albite exsolved from potassium feldspar grows over the plagioclase 

crystal nuclei, encompassing the existing rod-shaped quartz in zones crushed between 

plagioclase and potassium feldspar. The hypothesis was challenged by Ashworth (1972) 

on the basis of the molecular ratio of quartz in myrmekite. 

6. Other hypotheses combining the above. 

7. Formation by deformation: A recent hypothesis holds that the myrmekite formation 

reaction starts with a combination of stress/strain concentration and fluid intrusion 

during deformation. Therefore, myrmekite does not form in low-grade metasomatic 
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rocks, and its outcrop is limited to average and high-grade metasomatic rocks, forming 

in solid-state granitoids after crystallization. The required temperature for myrmekite 

formation can be in the 500–650 °C range (below the solidus of granite rocks). 

Myrmekite cannot form in cataclastic rocks that form by deformation at lower 

temperatures. As mentioned by Vernon (1991), stress can be a major indirect aid to 

myrmekite growth by facilitating the access of fluids to drive the growth. Myrmekite 

systematically forms at high normal-pressure sites during shear deformation (Simpson 

& Wintsch, 1989). At a low fluid-to-rock ratio, myrmekite nucleation seemingly starts 

only by stress/strain concentration (Menegon et al., 2006). Myrmekite formation can 

lead to permeability at the microscale, thus facilitating fluid access to reaction sites 

where myrmekite growth takes place. 

Based on studies on the local rocks, myrmekite has magmatic origins and is mostly 

of the rim type, which forms by the replacement of potassium feldspar with plagioclase 

(Figure 6a). 

b.3) Corona Texture 

According to Claeson (1998), the disruption of the balance between olivine and 

plagioclase results sets the stage for corona formation. Corona structures are indicators of 

ambient physicochemical changes experienced by the rock. Overall, coronas are divided into 

three general groups (Lamoen, 1979):  

1. Those forming by olivine–plagioclase reaction; 

2. Those forming by opaque oxide–plagioclase reaction; 

3. Those forming by opaque oxide–clinopyroxene reaction; 

It is important to note that, in thin sections, the olivines contacting pyroxene have 

not reacted and have remained intact. In fact, in these sections, the corona developed only 

where olivine was in direct contact with plagioclase. In conclusion, local plagioclases are of 

the olivine–plagioclase type. The product of the reaction is a fine-grained rim formed by 
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orthopyroxene and amphibole. The following formula is the best representation of the 

corona formation reaction (Lang et al., 2004). 

 

Pl+ Ol +H2O              Di +Amp + Spl +Opx 

 

The reaction starts from crystal edges and fractures inside primary olivines. The 

texture composition shows that during the cool-down of the old magma or subsolidus 

cooling, a maximum of two corona textures can develop (Acquafredda et al., 1992). 

Magmatic coronas are characterized by an internal orthopyroxene layer and an external layer 

composed of orange and brown amphibole. Subsolidus coronas are often composed of an 

internal, often pale, amphibole, and an external amphibole+spinel layer. The intergrowth 

results in a symplectic configuration. The first type is more prevalent in local coronas (Figure 

6a and b). 

b.4) Textures Resulting from Deuteric Alteration 

Water-rich mixes that are the final products of igneous crystallization promote the 

alteration of previously-solidified igneous rocks. Particularly along the rim of the rock or the 

joints and gaps, this alteration is known as deuteric alteration (Shelley, 1993). 

The sections indicated a drastic transformation of plagioclase crystals into sericite. 

Sericite growth requires a supply of water and K+. Therefore, the process can advance only 

when water-rich solutions are available. The most important source of potassium ions is the 

chloritization of biotite. In this case, potassium ions react with anorthite formations of the 

plagioclase releasing Ca2+. Therefore, anorthite-rich parts of a plagioclase are easily 

sericitized. Sericitization is characterized by the depletion of silicates of Ca, Mg, and Na, 

resulting in the replacement of aluminosilicates, particularly plagioclases, with fine-grained 

and fibrous (sericite) mica. This phenomenon takes place at around 300–350 °C. 
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Saussuritization is another secondary transformation that is found in thin sections 

(Figures 3 and 6c). Saussurite is another product of plagioclase alteration, during which the 

anorthite constituent transforms into epidote and the remaining plagioclase to albite. 

Saussurite forms in greenschist facies (its low-pressure equivalent) and is often accompanied 

by epidote, albite, calcite, and sericite. Saussurite is suggestive of the concentration of 

hydrothermal reaction products, in particular solutions, as epidote appears selectively in 

anorthite-rich parts of plagioclase. 

     

  

Figure 6. (a - b) corona texture in olivine gabbro; (c) Plagioclase decomposed into clay minerals in 
granodiorite; (d) Oscillatory zoning with alteration in plagioclase in quartz monzonite. 

Source: Authors (2020). 

 

CONCLUSION 

a b 

c d 
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The bulk of local rocks are made up of syenogranite, monzogranite, granodiorite, 

quartz monzonite, quartz monzodiorite, and olivine gabbro. The primary minerals of the 

local granitoids are orthoclase, plagioclase, quartz, and, to some extent, hornblende and 

biotite. Further, apatite, zirconia, and primary sphene were also found as accessory minerals 

in these rocks. Local granitoid rocks feature granular, granophyric, graphic, perthitic, and 

myrmekitic textures. 

The granophyric texture is suggestive of the shallow depth, and the perthitic texture 

indicates hypersolvus conditions during the formation of the granite. 

The granophyric texture of local rocks, lack of a metasomatic aureole between 

plutonic rocks and the surrounding igneous rocks, presence of pegmatite, and lack of primary 

biotite are all signs of the shallow depth of the plutonic rocks and the high water vapor 

pressure. Based on the texture type and the approximate temperature (850–900 °C), the 

rocks have replaced a water-rich magma at shallow depth. Coronas in the gabbros are of the 

olivine–plagioclase type. Corona formation has a direct relationship with the temperature 

and water supply and the migration of ions and is of magmatic type. 
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