
                                                   

 

Adv. For. Sci, Cuiabá, v. 8, n. 2, p. 1433-1443, 2021                                                          1433 

 

 

Prediction of dendrometric variables by optical data in Pinus taeda L. stand   
 

Carla Talita Pertille1* Marcos Felipe Nicoletti2 Larissa Regina Topanotti³ Luís Paulo Baldiserra 

Schorr4   

 
1Universidade do Estado de Santa Catarina, Av. Luis de Camões, 2090, Conta Dinheiro, CEP 88520-000, Lages, SC, Brasil  
2Universidade do Estado de Santa Catarina, Av. Luis de Camões, 2090, Conta Dinheiro, CEP 88520-000, Lages, SC, Brasil 
3Universidade Federal de Santa Catarina, Rod. Ulysses Gaboardi, CEP 89520-000, Curitibanos, SC, Brasil 
4Universidade Federal de Lavras, Caixa Postal 3037, CEP 37200-000, Lavras, MG, Brasil 

 

 

 

ABSTRACT: The objective of this work was to estimate the basal area and 

volume of a Pinus taeda L. stands located in Santa Catarina, using data from an 

orbital image of the Landsat-8/OLI sensor. In this sense, a forest research was 

carried out, with a random sampling process using the fixed area method. 20 

circular parcels of 400 m² were allocated. An orbital image of the Landsat-8/OLI 

sensor was used and 10 average vegetation indices per plot were calculated. These 

were correlated as variables of volume and basal area per plot, decorative by the 

forest inventory. The index with the best correlation for the volume was GNDVI 

with 0.47 and for a basal area, the MVI with 0.51. The adjustment of the regression 

models showed adjusted R² indices of 0.5639 and Syx of 13.31% for volume, and 

0.5213 and 11.93% for the basal area. It was possible to estimate the volume and 

basal area of the stands through the spectral data, however, it is recommended that 

this same technique be tested in other species of the genus Pinus spp. and with 

high spatial resolution media. 

 

 

 

Predição de variáveis dendrométricas por dados 

ópticos em um povoamento de Pinus taeda L.  
 

 

 

RESUMO: O objetivo desse trabalho foi estimar área basal e volume de um 

povoamento de Pinus taeda L. a partir de dados de imagem orbital do sensor 

Landsat-8/OLI. Para isso, foi realizado um inventário florestal, pelo método de 

área fixa e amostragem aleatória simples. Foram alocadas 20 parcelas circulares 

de 400 m². Foi utilizada uma imagem orbital do sensor Landsat-8/OLI e foram 

calculados 10 índices de vegetação médios por parcela. Esses índices foram 

correlacionados com as variáveis volume e área basal por parcela, obtidos pelo 

inventário florestal. O índice com a melhor correlação para o volume foi o Green 

Normalized Difference Vegetation Index (GNDVI) com 0,47 e para a área basal, 

o MVI, com 0,51. O ajuste dos modelos de regressão com esses índices apresentou 

R² ajustado de 0,5639 e Syx de 13,31% para o volume, e 0,5213 e 11,93% para a 

área basal. Foi possível estimar o volume e área basal do povoamento por meio 

dos dados espectrais, porém, recomenda-se que essa metodologia seja testada em 

outras espécies do gênero Pinus spp. e com sensores de média a alta resolução 

espacial.  
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Introduction 

Dendrometric variables are important forest 

information and their monitoring is one of the main 

tasks of the regional forest management plans aimed 

at preserving the environment and strengthening the 

local economy (Stournara et al., 2017). The volume 

is one of these variables and one of the main 

structural attributes of the forest, as well as the 

diameter at breast height and basal area, obtained by 

forest inventory techniques and estimates using 

general allometric equations (Chinembiri et al., 

2013; Gara et al., 2014). 

However, forest inventory methods are 

costly, time-consuming, laborious, and limited in 

extent (Tesfamichael et al., 2010). Thus, the use of 

Remote Sensing techniques is increasing, allowing 

the obtaining of information from the inventoried 

areas using satellite images of medium and high 

spatial resolution, setting up a new scenario in the 

monitoring of a forest stand (Gunlu et al., 2014). One 

of the main advantages of orbital images is the ability 

to obtain spatial and temporal information about the 

variables of interest in large areas with relatively low 

cost (Zhang et al., 2014). 

The estimation of forest parameters through 

orbital images includes the use of regression models 

that relate spectral responses of vegetation indices or 

bands with biophysical variables of the forest stand. 

In the image, the reflectance of the targets is 

characterized in each of the spectral bands or by the 

indices (Berra et al., 2012). According to Almeida et 

al. (2015), the indices highlight the antagonistic 

behavior of the vegetation in the spectral bands of 

red and near infrared, being more vulnerable the 

variations of the canopy structures than the 

individual bands. 

Among the indexes available in the literature, 

the Normalized Difference Vegetation Index 

(NDVI) developed by Rouse et al. (1974) is the best 

known and used for vegetation characterization and 

monitoring studies. The Simple Ratio (SR) 

vegetation index is the oldest index, based on the 

ratio between the near infrared band and the red band 

(Jordan, 1969), while the Adjusted Vegetation Index 

for the Soil Adjusted Vegetation Index (SAVI), 

proposed by Huete (1988), is characterized by 

reducing the effects of background soil on the 

vegetation signal by incorporating a soil adjustment 

constant into the equation vegetation in orbital 

images. 

In this sense, the use of images of medium 

spatial and temporal resolution becomes an attractive 

option for the estimation and the mapping of forest 

attributes. A sensor with these characteristics 

comprises the Landsat-8/OLI (Operational Land 

Imager) with free distribution of images, acquired 16 

days apart and with better spectral capacity (Dube et 

al., 2015). 

Several studies aimed at obtaining 

dendrometric variables have already been developed 

with this satellite, as can be mentioned: estimation of 

density of trees, basal area, volume and biomass data 

using Landsat/TM (Thematic Mapper) in northern 

Greece (Mallinis et al., 2004); Obtaining parameters 

of canopy cover, aboveground biomass, volume, 

Shannon diversity index and basal area using the 

Landsat Enhanced Thematic Mapper (ETM) bands 

and the normalized difference vegetation index 

transformed derivative (TNDVI) (Alrababah et al., 

2011); development of wood volume estimator 

models from Landsat 5 TM images, based on 

regional forest inventory data (Berra et al., 2012), 

timber volume estimation of a stand of Pinus elliottii 

Engelm. integrating data from LISS-III/ 

ResourceSat-1 and Landsat 5/TM sensors (Berra et 

al., 2016) and wood volume estimation of a stand of 

Eucalyptus grandis using Landsat-8/OLI (Alba et al., 

2017).  

Therefore, the importance of accurate and 

direct estimates of forest stand characteristics, such 

as volume and basal area, can be obtained through 

the association of optical data and data from the 

forest inventory. In this scenario, this study aimed to 

estimate the basal area and volume of a Pinus taeda 

L. stand, using data from an orbital image of the 

Landsat-8/OLI sensor. 
 

Material and Methods 

Study area 

The study was carried out in a stand of 43.10 

hectares with 14 years old Pinus taeda L. located in 

the municipality of Caibi, west of the state of Santa 

Catarina (Figure 1). The planting was subjected to 

thinning at 8 and 12 years old. Located at an altitude 

of 337 meters, the area presents mesothermic climate 

of the humid type, according to Koeppen 

classification with frequent frosts in the months of 

June and July. The average temperature of the 

municipality is 19,6º and the annual precipitation is 

between 1900 mm and 2000 mm (Alvares et al., 

2013). 

 
Figure 1. Location of the study area: Brazil, Santa 

Catarina and area of Pinus taeda L. 
 

The forest inventory procedure was 

performed using the fixed area sampling method and 

simple random sampling process. Ten plots were 
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installed circular of 400 m² and radius of 11.28 

meters. The circumference at 1,3 m height (CAP) of 

all trees in the plot was measured with a tape 

measure and the height of dominant trees according 

to Assmann's concept (1970) were measured using 

the Easy Measure computational application. The 

geographic position of the plots was obtained with 

the View Ranger application whose data were 

georeferenced in the UTM Datum WGS-84 

coordinate system (World Geodetic System - 1984), 

compatible with the reference system SIRGAS 2000 

(Geocentric Reference System of the Americas). 

As a function of the diameters amplitude of 

the forest, 30 trees were scaled by the Smalian 

method, in which the heights of the stem were 

measured, the total heights and the diameter in the 

positions of 0,07 m, 0,7 m, 1,30 m, 3.3 m, 5.3 m and 

so on every two meters to the end of the tree. With 

this information, linear regression models were fitted 

(Table 1) for the estimation of the individual volume 

with bark of the stand trees. 

Remotely located data 

 For the application of Remote Sensing 

techniques, an orbital image of the Landsat-8/OLI 

(Operational Land Imager) sensor was used, which 

was acquired on the United States Geological Survey 

platform, with the bands described in Table 2, for the 

date 01/30/2018, orbit 222 and point 79. 

The digital processing of this image was performed 

in the computer application ENVI (Environment for 

Visualizing Images), in which the atmospheric 

correction was performed using the FLAASH 

algorithm (Fast Line-of-sight Atmospheric Analysis 

of Hypercubes), a process that uses physical 

measurements or estimates of atmospheric 

parameters for image correction using differential 

and integral equations (Gaida et al., 2020) to obtain 

surface reflectance. After this step, the vegetation 

indices were calculated, described in Table 2 
 

Table 1. Volumetric equations tested for the estimation of the individual volume of Pinus taeda L. 
Equation Author 

v̂= β
0
+ β

1
∗ 𝒅𝒃𝒉 Linear 

v̂= β
0
+ β

1
∗ 𝒅𝒃𝒉² Kopezky-Gehrardt 

v̂= β
0
+ β

1
∗ 𝒅𝒃𝒉 + β

2
∗ 𝒅𝒃𝒉² Hohenadl-Krenn 

v̂= β
0
+ β

1
∗ 𝒅𝒃𝒉² ∗H Spurr 

ln v̂ = β
0
+ β

1
∗ ln dbh Husch  

ln v̂ = β
0
+ β

1
∗ ln 𝒅𝒃𝒉 + β

2
∗  1/dbh Brenac  

ln v̂ = β
0
+ β

1
∗ ln 𝒅𝒃𝒉 ²H Spurr  

ln v̂ = β
0
+ β

1
∗ ln 𝒅𝒃𝒉 + β

2
∗ ln H Schumacher-Hall 

Note v: individual volume (m³); βn: model parameters; ln: natural logarithm; H: total height (m); dbh: diameter at 

1,3 m height (cm).  
 

Table 2. Indices of vegetation calculated for the stand of Pinus taeda L. 
VI Equation Reference 

ARVI ρNIR - (2 * ρRED + ρBLUE) 

ρNIR + (2 * ρRED + ρBLUE)
 

Kaufaman and Tanré (1992) 

DVI (ρNIR - ρRED) Clevers (1988) 

EVI 2.5*(ρNIR –B4) / (ρNIR +6* ρRED 

7.5* ρBLUE +1) 

Gitelson et al. (1996) 

EVI2 2.5*(ρNIR – ρRED) / (ρNIR +2.4* ρRED 

+1) 

Jiang et al. (2008) 

GNDVI ρNIR-ρGREEN

ρNIR+ρGREEN
 

Gitelson et al. (1996) 

MSAVI (ρNIR-ρRED)

      (ρNIR-ρRED + L) 
 (1+L) 

Qi et al. (1994) 

MVI ρNIR-ρSWIR

ρNIR+ρSWIR
 

Sousa e Ponzoni (1998) 

NDVI ρNIR-ρRED

ρNIR+ρRED
 

Rouse et al. (1974) 

SAVI (1+L) (ρNIR-ρRED)

ρNIR + ρRED + L
 

Huete (1988) 

SR ρNIR

ρRED
 

Jordan (1969) 

Where in: VI: Vegetation Index; ARVI: Atmospherically Resistant Vegetation Index; DVI: Difference Vegetation Index; EVI: 

Enhanced Vegetation Index; EVI2: Enhanced Vegetation Index 2; GNDVI: Green Normalized Difference Vegetation Index; 

MSAVI: Modified Soil Adjusted Vegetation Index; MVI: Moisture Vegetation Index; NDVI: Normalized Difference 

Vegetation Index; SAVI: Soil Adjusted Vegetation Index; SR: Simple Ratio Vegetation Index; ρBLUE: Blue band reflectance; 

ρGREEN: Green band reflectance; ρRED: Reflectance of red band; ρNIR: Reflectance of the near Infrared band; ρSWIR: 

Reflectivity of the short-wave infrared band; L: constant that minimizes the effects of the soil, considered as 0.50. 
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With the central coordinates of the plot it 

was possible to perform the georeferencing of the 

same in the image. Using the buffer tool, available in 

a GIS environment, an area of equal radius of the plot 

(11.28 meters) was constructed around the central 

point of each plot. Finally, the average value of each 

vegetation index per plot was obtained with the 

Zonal Statistics as a Table tool in a GIS environment 

(Esri, 2018). 

With these data, a Pearson correlation 

analysis was performed between the dendrometric 

variables per plot (volume and basal area) 

(m³/0.04ha) with the mean vegetation indices per 

plot. The indices better correlated with these 

parameters were used in the construction of 

regression models by the Stepwise technique. For 

this, the dependent variables comprised the forest 

parameters and the independent variables involved 

the vegetation indexes. The adjusted regression 

models are shown in Table 3. 

 

 

Table 3. Regression models adjusted for volume and basal area estimation by plot (m³ 0.04ha-1) using vegetation 

indices from Landsat-8. 
 Volume by plot (m³ 0,04ha-1) 

 Model Equation Author 

1 V= β0* IVβ1+ ε Berkhout 

2 
V= β0* β1* 

1

IV
+ ε 

Curtis 

3 V= β1* IV+β2*IV2+ ε Dissescu-Meyer 

4 V= β0+ β1* IV+β2*IV2+ ε Hohenadl-Krenm 

5 V= β0+ β1*IV2+ ε Kopezky-Gehrardt 

6       V = β
0
+ β

1
*IV + β

2
*IV2+ β

3
IV2+ 

β
4
*IV3+β

5
*IV4+β

6
*IV5+β

7
*IV22+  β

8
* IV  

* IV2+ β
9
* ln IV* ln IV2 + β

10 
* 

1

IV3
*1/IV2 

Stepwise 1 

7 V = β
0
+ β

1
*IV + β

2
*IV2+ β

3
IV2+ β

4
*IV3+ 

β
5
*IV4+β

6
*IV5+β

7
*IV22+  β

8
∗  IV23 + β

9
∗

1

𝐼𝑉2

+ β
10 

* IV * IV2+ β
11 

* 
1

IV3
*1/IV2 

Stepwise 2 

 Basal area by plot (m² 0,04ha-1) 

1 G = β0* IVβ1+ ε Berkhout 

2 
G = β0* β1* 

1

IV
+ ε 

Curtis 

3 G = β1* IV+β2*IV2+ ε Dissescu-Meyer 

4 G= β0+ β1* IV+β2*IV2+ ε Hohenadl-Krenm 

5 G = β0+ β1*IV2+ ε Kopezky-Gehrardt 

6           G = β
0
+ β

1
*IV2+ β

2
*IV3+ β

3
IV4+ 

      β
4
*IV5+β

5
+IV23+ β

6
+ *IV25+β

7
*ln IV

2
 

+  β
8
EXP IV4+ β

9
*EXP +  β

10 
* 

1

IV23
*1/IV 

Stepwise 1 

7 G = β
0
+ β

1
*IV² + β

2
* IV3+ β

3 
∗  IV4 + β

4

∗  IV5+ β
5
*IV22+ β

6
* IV23+ β

7
* IV2

5
+      β

8
* ln IV +  β

9

∗  EXP IV + β
10

∗ EXP IV4

+  β
10 

* 
1

IV3
*1/IV2 + β

11 
* 

1

IV2
3

*1/IV  

Stepwise 2 

Note: V: volume by plot (m³ 0.04ha-1); G: basal area by plot (m² 0.04ha-1); βi: parameters to be estimated; IV: 

vegetation index (indicated by correlation analysis); IV2: vegetation index 2 (indicated by correlation analysis); ε: 

error associated with the model.

It is noteworthy that the models for 

estimating basal area and volume per unit area are 

adaptations of individual tree volume models. 

 

Model selection 

The selection of the best model was 

performed considering the statistical criteria: 

adjusted coefficient of determination (R² aj.) 

(Equation 2), standard error of the estimate 

(Equation 3) and standard error of the estimate, in 

percentage (Syx%) (Equation 4) according to 

Moeser and Oliveira (2011). In addition to these 

factors, the graphical analysis of the residues was 

also evaluated. 
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R2 = 
𝑆𝑄𝑟𝑒𝑔

𝑆𝑄𝑡𝑜𝑡

                                    (1) 

R2aj =1- { (1-R2)* (
n-1

n-p
)}                      (2) 

Syx = √
∑ (y-yi)²

n-p
                             (3) 

Syx= 
Syx

Ŷ
*100                              (4) 

 

Note: R²: coefficient of determination; SQreg: Sum 

of regression squares; SQtot: sum of squares total; 

R² aj: adjusted coefficient of determination; n: 

number of trees that were planted; p: number of 

parameters of the equation; Syx: standard error of the 

estimate (m³); yi: observed volume (m³); yi: 

estimated volume (m³); Syx (%): standard error of 

the estimate in percentage (%); Ŷ: mean of observed 

values (m³). 

 

In addition, other fit metrics were 

evaluated: Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC). The first one 

reflects the loss of information associated with the 

predictions of a model and the observed values. 

Thus, the lower the AIC, the more explanatory the 

model (Moser and Oliveira, 2011). The AIC was 

obtained by Equation 5:  

 

AIC = 2 log (θ̂) + 2k                     (5) 

Note:  log𝐿(�̂�): logarithm of the maximum likelihood 

function; k: number of model parameters. 

 

The BIC also increases with the sum of 

squares of the residues and the smaller the value, the 

better the model. Equation 6 obtained this criterion: 

 

BIC = -2 log  (Lp)  +  [(p+1)+1] log (n)      (6) 

Note: n: number of observations in the sample; p: 

number of model parameters; Lp: maximum 

likelihood function of the model. 

 

The Root Mean Squared Error (RMSE) 

(Equation 7) was also calculated and evaluates the 

differences between the observed values and the 

values predicted by the regression model (Moser and 

Oliveira, 2011): 

 

RMSE = √
∑(y - yi)²

n
                  (7) 

Where in: RMSE: Root Mean Square Error; y: 

observed volume; yi: estimated volume; n: number 

of observations.  

 

The best method was determined by the 

metrics previously mentioned (Equation 2, 3, 4, 5, 6 

and 7). The fit of the models and calculations of the 

adjustment metrics were developed in software R 

version 3.4.1. (R CORE TEAM, 2018). 

 

Results and Discussion 

 

Individual volume models 

The adjustment of the regression models for 

estimating the individual volume with bark of the 

stand trees (Figure 2) revealed regular statistics, with 

R² adjusted between 0.9192 to 0.9954 and standard 

error of the estimate between 7.69 and 27.69%. The 

best adjusted model for the stand of Pinus taeda L. 

was the logarithmized Spurr model (Spurr log), due 

to the higher adjusted R² (0.9954), lower error 

(7.69%) and better distribution of residues (Figure 

2). 

 

 
Figure 2. Graphical distribution of the residuals for 

the best fitted regression models for the individual 

volume estimation of the trees of the stand of Pinus 

taeda L. 

 

Correlation analysis 

The correlation of vegetation indexes with 

basal area (Table 4) showed that there was a negative 

and positive correlation, and the highest correlation 

was observed in the MVI index, with 0.51. For the 

other indexes, the correlation ranged from -0.12 to 

0.43. As for the correlation between vegetation index 

and volume (Table 5), the highest correlation was 

with the GNDVI index, with 0.47. 

The values of the correlation between basal 

area and volume (Table 4 and 5) with vegetation 

indices can be explained by the bands used in the 

calculation of vegetation indices obtained. The 

negative correlations found are related to the amount 

of shadow effects and the amount of dots in the area 

that have the highest brightness. These points 

increase as the volume and age of the trees increase, 

which causes a reduction in spectral response 

(Franklin et al., 2001).



 

Pertille et al. 

 

Adv. For. Sci, Cuiabá, v. 8, n. 2, p. 1433-1443, 2021                                                          1438 

 

Table 4. Pearson correlation coefficients between 

basal area per plot and the mean vegetation indexes 

per plot obtained with Landsat-8. 

 G 

G 1 

ARVI 0,31 

DVI 0,18 

EVI -0,12 

EVI2 0,40 

GNDVI 0,35 

MSAVI 0,40 

MVI 0,51* 

NDVI 0,43 

SAVI 0,40 

SR 0,43 

Note: G: basal área by plot (m² 0.04ha-1).  

* Significant correlation at 5% probability. 

 

 

Table 5. Pearson correlation coefficients between 

volume per plot and the mean vegetation indexes per 

plot obtained with Landsat-8. 

 V 

V 1 

ARVI 0,21 

DVI 0,09 

EVI -0,03 

EVI2 0,33 

GNDVI 0,47* 

MSAVI 0,33 

MVI 0,40 

NDVI 0,36 

SAVI 0,33 

SR 0,36 

Note: V: volume by plot (m³ 0.04ha-1).  

* Significant correlation at 5% probability. 

 

 

Spanner et al. (1990) states that closed dents 

have positive correlations and negative correlations 

are found in areas with open canopies. The 

population in question has large open areas, due to 

thinnings carried out, which may have directly 

influenced the band reflectance, and consequently 

the indexes obtained and its correlation with the 

variables. 

For the basal area, the best correlated index 

was the MVI, whose equation is formed by the ratio 

between the near-infrared and short-wave infrared 

bands. The reflectance in the near infrared spectral 

range is caused by the internal structure of the sheet. 

Thus, if there are more internal spaces in the internal 

structure of the leaf, the greater the reflectance in this 

range. In this study, it was observed that the canopy 

cover and the growth of the trees caused an increase 

in the reflectance in the near infrared (Ponzoni et al., 

2012). In shortwave infrared, the reflectance of the 

leaves decreases due to strong bands of water 

absorption. 

The highest correlation observed for the 

volume was with the GNDVI index, which in turn, 

presents the substitution of the red band by the green 

band in its formula. The spectral behavior of these 

bands shows that there is a negative linear 

correlation between the reflectance factor and the 

green vegetation in the red wavelength. In the near 

infrared, this correlation is positive. 

Berra et al. (2016) also list characteristics of 

the stands as height, type of management and relief 

of the area as factors that may have influenced the 

relationship between vegetation indexes and the 

variables basal area and volume. In that study, age 

and the type of management were important factors 

in the relationship of spectral bands to the volume of 

wood stand. 

 

Estimation of forest parameters using SR 

The fit of the regression models for the 

estimation of basal area per plot (Table 6) from the 

IV with the highest correlation revealed statistics 

with low to moderate precision. The first model was 

not adjustable. The models 2, 4, 5 and 6 showed low 

R² adjusted and, consequently, bigger errors. Only 

model 3 and 6 had satisfactory fitting metrics. 

 

Table 6. Adjustment statistics of the regression models tested for Landsat-8 sensors to estimate basal area per plot 

(m² 0.04ha-1) using vegetation indexes.  
Model R² aj Syx  Syx (%) AIC BIC F RMSE 

1 - - - - - - - 

2 0,0191 0,27 17,02 9,425 12,41 1,372 0,26 

3 0,9156 0,27 17,08 10,31 12,63 342,49 0,26 

4 -0,0374 0,28 17,52 11,40 15,38 0,657 0,26 

5 0,0202 0,27 17,07 9,41 12,39 1,392 0,26 

6 0,5213 0,1941 11,93 -1,869 12,31 2,724 0,11 

7 0,0449 0,5316 32,67 39,52 49,48 1,112 0,39 

Note: R² aj: adjusted determination coefficient; Syx: standard error of the estimate (m³ 0.04ha-1); Syx (%): standard 

error of the estimate in percentage; AIC: Akaike Information Criteria; BIC: Bayesian Information Criterion; F: 

significance test at 5% probability; RMSE: Root Mean Square Error (m³ 0.04ha-1). 
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Table 7. Adjustment statistics of the regression models tested for Landsat-8 sensors to estimate volume per plot 

(m³ 0.04ha-1) using vegetation indexes. 
 Model R² aj Syx  Syx (%) AIC BIC F RMSE 

1 0,4855 3,95 18,11 115,59 118,57 - 3,75 

2 0,1525 4,04 18,56 116,57 119,56 4,420 3,84 

3 0,9143 3,95 18,15 121,45 134,72 306,274 3,75 

4 0,3409 3,56 16,37 112,40 116,38 5,915 3,29 

5 0,1873 3,96 18,17 115,74 118,75 5,379 3,76 

6 0,5639 2,90 13,31 107,42 119,38 3,457 1,94 

7 0,4076 3,38 15,55 111,44 126,37 2,006 1,85 

Note: Model: model a 1 7 were derived from the Stepwise technique model; R² aj: adjusted determination 

coefficient; Syx: standard error of the estimate (m³ 0.04ha-1); Syx (%): standard error of the estimate in percentage; 

AIC: Akaike Information Criteria; BIC: Bayesian Information Criterion; F: significance test at 5% probability; 

RMSE: Root Mean Square Error (m³ 0.04ha-1). 

 

 

   

Figure 3. Graphical dispersion of the residuals of the models adjusted with the Landsat-8 data in the estimation of 

basal area per plot (m² 0.04 ha-1) of a stand of Pinus taeda L. 

 

Table 7 illustrates the model adjustment 

metrics for volumetric prediction per plot, revealing 

that the volumetric regression models were higher 

than the basal area as a function of the higher 

adjusted R² and the smaller standard error of the 

estimate (Table 6). 

In the graphical analysis of the residuals for 

the regression models for basal area (Figure 3) it is 

possible to notice that in the model 6 (Stepwise 1) 

there was a more concentrated distribution around 

the regression line. In the other models, the residues 

presented similar behavior, with the presence of 

outliers, underestimates, and super estimates. 

Among the models tested for the estimation 

of basal area per plot, the model generated by the 

Stepwise 1 technique can be indicated as the most 

adequate to estimate this variable using vegetation 

indices, due to the higher adjusted R², lower error 

and better graphic distribution waste. 
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Figure 4. Graphical dispersion of the residuals of the models adjusted with the Landsat-8 data in the volume 

estimate per plot (m³ 0.04 ha-1) of a stand of Pinus taeda L. 

 

For the residuals of the fitted volumetric 

models (Figure 4), a similar behavior of the residues 

can be observed in observed in two of all the adjusted 

models. It is possible to notice the absence of 

independence of the errors, one of the assumptions 

of the regression analysis in all the models. In 

addition, there were underestimates and over 

estimates, as well as the presence of outliers. 

However, the model that presented the best volume 

estimate as a function of the best vegetation indices 

correlated to the Landsat-8 data was the first model 

generated by the Stepwise technique, due to the 

higher coefficient of determination adjusted (0.9143) 

and lower standard error of the estimate (13.31%) 

and the best graphical distribution of the residues.  

The quality of the fitted models for basal area 

and volume estimation is directly related to the 

obtained vegetation index values. It is worth 

mentioning the existing constraints on the 

association between remotely located data and forest 

inventory data. Meng et al. (2007) state that the 

inclusion of characteristics such as geology, climate, 

soil effects and site index of the stand in the fit of the 

models would favor the accuracy of the estimates. 

Another important detail concerns the size and the 

identification of the plots, because in this study, the 

size of the plots was inferior to the spatial resolution 

of the Landsat-8 sensor (30 m) and the identification 

of the plots with the View Ranger application also 

resulted in errors of location up to 10 meters from 

field plots, caused by the closure of the forest 

canopy. 

The sensors of the Landsat constellation have 

already been used in other researches for the 

quantification of forest parameters, such as basal 

area and volume, as the studies cited below. 

The volume of a stand of Pinus elliotti 

Engelm. from Landsat-5 TM and LISS-

III/ResourceSat-1 data was estimated by Berra et al. 

(2016). The linear correlation of Landsat-5 data was 

lower than that obtained with LISS-III. However, 

reflectance values in four spectral ranges (blue, 

green, red and infrared) were equivalent for the two 

sensors that represented sensitivity to the volumetric 

potential changes of the area, indicating the 

possibility of integration between LISS and TM 

images for such surveys. 

The identification of commercial Eucalyptus 

grandis plantations of different ages and the 

estimation of total wood volume of these areas using 

Landsat-8/OLI sensor images was performed by 

Alba et al. (2017). The data remotely allowed the 

differentiation of the stages of growth of the species 

in question and the estimate of the volume through 

the SAVI index, which better represented the 

changes in the volume of the stand. The selection of 

variables by the Stepwise method generated adjusted 

models with R² adjusted above 0.70 and standard 

error of the estimate of 60.08 m³ ha-1.  

The evaluation of the seasonal data of 

Landsat-8/OLI satellite images in the estimation of 
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the variables tree density, basal area and volume of 

wood of a heterogeneous forest in the Mediterranean 

in the northeast of Greece was done by Chrysafis et 

al. (2017). The results revealed that the selection of 

variables to reduce the number of predictor variables 

improved the prediction accuracy of all three 

attributes. The R² of the models was 0.541 for the 

density of trees, 0.724 for basal area and 0.68 for 

volume considering the dry season. The model 

generated from a multi temporal image generated R² 

of 0.532 for tree density, 0.716 for basal area and 

0.653 for volume. 

Santos et al. (2017) tested the feasibility of 

the use of multispectral images of the Landsat-8/OLI 

sensor through regression analysis with field data, 

for the estimation of forest parameters in the Cerrado 

area. For the volume, the adjusted R² ranged from 

0.40 to 0.49. For the basal area, the adjusted R² of 

the models ranged from 0.61 to 0.66. The authors 

concluded that this methodology presents 

application potential in Cerrado areas and that NDVI 

presented the best correlation with the estimated 

variables. 

The estimation of forest attributes by a 

combination of Landsat-8/OLI sensor images and 

forest inventory data by the kNN (k Nearest 

Neighbor) method as a non-parametric method was 

tested by Abedi et al. (2018). The data demonstrated 

that the use of kNN was satisfactory in the basal area 

estimation, but it has less efficiency to estimate tree 

density and volume. 

Another factor that had great influence on the 

obtained results was the spatial resolution of the 

sensor tested. The use of high spatial resolution 

sensors could contribute to the improvement of 

estimates of dendrometric variables. 

Dalponte et al. (2018) evaluated models for 

predicting above-ground biomass and their 

combination with airborne SR data for DBH and 

biomass predictions at plot level in boreal forests 

using remotely detected data from Airborne Laser 

Scanner (ALS) and hyperspectral data. The 

comparison among models developed in field data 

versus models developed from remote sensing data 

revealed that both can be used in predicting the 

variables; however, there was a large systematic 

error. Because of this, the authors suggest caution in 

the use of these models.  
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Conclusions 

The vegetation index that presented the best 

correlation with the basal area was the MVI and for 

the volume the GNDVI. It was possible to estimate 

basal area and stand volume through remotely 

located data. Regarding modeling, it was possible to 

notice the superior performance of Stepwise 

techniques when compared to traditional modeling 

techniques. 
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