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ABSTRACT: The aim of this study was to evaluate the use of leaf color pattern 

to analyze leaf nutrient concentrations in Eucalyptus leaves and to establish 

relationships between color patterns and leaf nutrient concentrations using two 

exploratory analysis. The study was carried out in Eucalyptus stands at 25 months 

old using leaves from the lower of tree crowns classified into five color patterns 

of Munsell color charts for plant tissues. The principal component analyses and 

the self-organizing maps were used to aid in the classification of samples in leaf 

color patterns. Subsequently, the k-means cluster algorithm was performed. In 

principal component analysis, the 7.5 GY 8/8 leaf color pattern stood out from the 

others and it was mainly influenced by nitrogen, phosphorous, copper, and 

potassium concentrations. The samples of 7.5 GY 8/4 leaf color pattern did not 

present a great nitrogen, phosphorous, sulfur, copper and potassium 

concentrations as the 7.5 GY 8/8 neither a great manganese, calcium, boron, zinc 

and iron concentrations as others leaf color patterns. The self-organizing map 

provides a greater proximity between the 7.5 GY 8/8 and 7.5 GY 8/4 leaf color 

patterns and the others leaf color patterns were randomly distributed in the U-

matrix. Although the k-means algorithm presented two clusters in both analyses, 

the self-organizing map presented a slight superiority than principal component 

analysis. Using leaf color patterns was possible to infer about leaf nutrient 

concentrations in Eucalyptus. Both methods were able to distinguish only the 

healthy leaves 7.5 GY 8/8 from those whose were in the leaf senescence process. 

 

Análise exploratória da concentração de nutrientes em 

padrões de coloração foliar de Eucalyptus 
 

RESUMO: O objetivo deste estudo foi avaliar o uso de padrões de coloração 

foliar para analisar concentrações de nutrientes foliares em folhas de Eucalyptus e 

estabelecer relações entre estes padrões e concentrações de nutrientes foliares por 

meio de duas análises exploratórias. O estudo foi realizado em plantios de 

Eucalyptus com 25 meses de idade, classificando folhas da região basal da copa 

em cinco padrões da Carta de Munsell para tecidos foliares. As Análise de 

Componentes Principais e Mapas Auto-organizáveis foram utilizadas para 

classificar amostras em padrões de colorações foliares, o padrão de coloração 7.5 

GY 8/8 diferenciou dos outros padrões, principalmente influenciado pelas 

concentrações de nitrogênio, fósforo, cobre e potássio. As amostras com padrão 

de coloração 7.5 GY 8/4 não apresentou altas concentrações de nitrogênio, fósforo, 

enxofre, cobre e potássio como as folhas do padrão 7.5 GY 8/8 nem altas 

concentrações de manganês, cálcio, boro, zinco e ferro como os demais padrões 

de coloração. Pelos mapas auto-organizáveis apresentaram maior proximidade 

entre os padrões de coloração 7.5 GY 8/8 e 7.5 GY 8/4, enquanto os demais 

padrões de coloração foram distribuídos aleatoriamente na matriz U. Embora o 

algoritmo k-médias apresentou dois agrupamentos em ambas análises, os mapas 

auto-organizáveis apresentaram ligeira superioridade em relação a análise de 

componente principais. Pelo uso de padrões de coloração foliar foi possível inferir 

sobre as concentrações de nutrientes foliares em Eucalyptus. Ambos métodos 

foram capazes de distinguir folhas saudáveis 7.5 GY 8/8 dos demais padrões de 

coloração em processo de senescência foliar. 
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Introduction 

The Eucalyptus, a relevant tree for Brazilian 

timber production, contributed R$ 71.1 billion to the 

country’s gross domestic product in 2016 (Ibá 2017). 

These species undergo different development and 

growth stages during its stand growing season. In 

general, all fertilizations in Eucalyptus stands are 

performed with their respective nutritional 

management up to 24 months old (Santana et al. 

2014). Since then, the canopy closure and nutrients 

cycling start and, along with fertilizations previously 

carried out, are enough to ensure production until the 

stem cutting with approximately seven years old. 

Due to this, the leaf senescence process in crown 

basal leaves begins with the canopy closure. 

The leaf senescence is a process of leaf cell 

disruption with traits and ions mobilization released 

during the process (Thomas and Stoddart 1980; 

Maillard et al. 2015). Leaf nutrients with greater 

mobility in phloem are translocate from senescent 

leaves to young tissues in plants (Himelblau and 

Amasino 2001; Avice and Etienne 2014). In 

addition, protein and chlorophyll concentrations 

decrease in senescent leaves causing leaf yellowing 

(Hörtensteiner and Krãutler 2011). 

The leaf yellowing occurs gradually as the 

leaf senescence process progresses. Although this 

process is gradual, it is possible to describe changes 

in leaf color patterns over time. The use of leaf color 

patterns can be useful to relate to nutrient 

concentrations and their translocation dynamics 

(Karcher and Richardson 2003; Raese et al. 2007). 

Although the senescence is a normal process in 

Eucalyptus stands and has not direct relationship in 

normal conditions with health plants, color patterns 

in senescent leaves can indicate different nutrient 

concentrations and them dynamics in plant 

metabolism, even in leaves in another crown 

positions. 

However, there are many relationships 

between nutrients within plant and the translocation 

processes do not act individually in each nutrient 

(Maillard et al. 2015). In view of these complex 

relationships, the visual diagnosis in senescent 

leaves based on only one nutrient as determinant in 

leaf color patterns is not feasible. Therefore, the use 

of techniques that considers concentrations of more 

than one nutrient at the same time are most 

appropriate to verify their influences in each leaf 

color pattern. 

In addition, as the color determination is 

subjective of the observer, the leaf color pattern 

establishment can be widely used to improve the 

assertiveness of leaf visual analysis. The visual 

analysis of soil coloration using the Munsell color 

chart is an accepted and validated methodology with 

wide application in soil science. Although less 

widespread than soil Munsell color chart, there is 

also a Munsell color charts for plant tissues 

(MCCPT) (GretagMacbeth LLC, New Windsor, 

NY). 

The MCCPT is based on a three-dimensional 

system with the idea of each color has three 

parameters or attributes. The first is the color 

perception known as hue and the tonality range in 

visible region of electromagnetic spectrum, from 

violet to intense red. The second is value, which is 

the luminous intensity of the color ranging from 10 

to pure white until zero to pure black. The last is the 

color saturation chroma, assuming low values for 

weak colors and high values for bright colors. 

Similar to the use of Munsell color chart to soil 

analysis, it is expected that the use of MCCPT may 

be widely used in leaf visual analysis in field 

conditions, establishing leaf color patterns as 

nutrient concentrations indicatives. 

Therefore, the aim of this study was to 

evaluate the use of leaf color pattern to analyze leaf 

nutrient concentrations in Eucalyptus and to 

establish relationships between color patterns and 

leaf nutrient concentrations. 

 

Material and Methods 

The study was carried out in Eucalyptus 

stands at 25 months old, established at 7.0 x 1.3 m 

tree spacing, with three clones (E. urophylla x E. 

grandis: GG680, E. urophylla x E. grandis: GG682 

and hybrid of E. urophylla ST Blake: I144). In these 

stands nine plots of 10 ha were allocated, three per 

clone. In each of the nine plots, a sample was 

collected for each color pattern (five patterns), 

totaling 45 samples. For sample composition, one 

leaf was collected from 30 plants randomly selected 

in zigzag walk. Leaves from the lower of tree crowns 

were visually classified into five color patterns 

MCCPT (Gretag-Macbeth, New Winsor, NY, USA). 

The leaf color patterns were defined by the clear 

expression of the biochemical cycling of nutrients 

(Saur et al. 2000) (Table 1).  

The composite samples were placed in paper 

bags and oven-dried with forced air circulation at 

65ºC. After drying, the 45 composite samples were 

digested in nitro-perchloric solution and the 

concentrations of calcium (Ca), magnesium (Mg), 

sulfur (S), zinc (Zn), iron (Fe) and manganese (Mn) 

determined by spectrophotometry. The phosphorus 

concentration (P) was determined by colorimetry, 

the potassium concentration (K) by flame 

photometry and the total nitrogen concentration (N) 

by the Kjeldahl method after sulfuric digestion. 

To aid in the classification of samples in leaf 

color patterns determined by MCCPT, the Principal 

Component Analyses (PCA) and the Self-

Organizing Maps (SOM) were used. PCA was used 

in order to reduce the dimensionality of the data, to 

analyze the influence of the nutrients on the leaf 

color patterns and to visualize the samples clusters 

tendency. The PCA reduce the data dimensionality 
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Table 1. Leaf color pattern sampled in Eucalyptus stands 

Color name diagrams Matte color chips Hue Value Chroma Munsell color code 

Brilliant yellow green 
 

7.5 GY 8 8 7.5 GY 8/8 

Light yellow green 
 

7.5 GY 8 4 7.5 GY 8/4 

Brown 
 

7.5 YR 4 2 7.5 YR 4/2 

Yellow 
 

2.5 Y 7 6 2.5 Y 7/6 

Strong yellow 
 

2.5 Y 8 10 2.5 Y 8/10 

 

by generating new variables by the linear 

combination of the initial variables. The PCA 

presents theses new variables in k dimension always 

smaller than of d dimension (nutrient numbers 

analyzed). The set of new dimensions generated are 

called as Principal Components (PCs) and each PC 

is directed to maximum variance. In this research, 

ellipses were used in the scatterplot to delimit the 

influence area of sample groups with probability of 

95%. 

Similar to PCA, the SOM was also used to 

verify the influence of leaf nutrient concentrations in 

leaf color patterns and analyze the sample clusters 

tendency. SOM is a type of artificial neural network 

firstly proposed by Kohonen (1982) based on the 

winning neuron. The SOM groups samples with 

similar patterns from high dimensional input space 

in a non-linear fashion onto a low-dimensional space 

with outputs arranged in neurons grid (Kohonen 

2001). Its architecture is formed only by input and 

output layers completely connected to each other by 

weights that fit in each iteration. In this study, we 

used the Gaussian neighborhood function and a 

hexagonal grid with 5x9 neurons, performing 1000 

iteration to analyze the algorithm at a learning rate 

range of 0.05 until 0.01 (Equation 1). 

Nj*j(t) = e

‖rj* - rj‖
2

2σ2(t)                                                           (1) 

 
wherein: Nj*j(t) is the neighborhood function of 

winning neuron j* on iteration t; σ2(t) is the 

neighborhood radius on iteration t; ‖rj* - rj‖
2
 is the 

distance between j* and j neurons in the grid. 

After PCA and SOM, the k-means cluster 

analysis was performed with 1000 iterations and 

selecting the number of clusters by the reducing sum 

of squares within clusters and the number of leaf 

color patterns. All graphs and statistical procedures 

were carried out using the software R Core Team 

(2017) version 3.4.0, platform support R Studio 

version 1.0.143. 

 

Results and discussion 

The PCA presented two PCs explaining 

around 70% of total variance (Figure 1). Due to this 

and the small percentage of increase including three 

PCs or more, only two PCs were chosen. 

 
Figure 1. Variance explained by principal 

components. 

It was verified strong correlation between N, 

P, S and Cu concentrations and PC1 by the 

eigenvector of the first two PCS (Equation 2). 

Similarly, the PC2 was strong correlated with K, Ca, 

Fe, Mn and Cu concentrations (Equation 3). Mg and 

Zn concentrations were less correlated with both PCs 

(Equations 2 and 3). Although not highlighted in any 

PC, the B concentrations were reasonable correlated 

in both PCs (PC1: 0,29 e PC2: 0,25). 

 

PC1= -0,42N -0,42P -0,29K +0,28Ca -0,19Mg -0,38S +0,29B -0,08Zn +0,08Fe +0,027Mn -0,37Cu (2) 

PC2= 0,01N +0,02P +0,33K +0,42Ca -0,02Mg +0,15S +0,25B -0,26Zn -0,55Fe +0,41Mn +0,31Cu (3) 
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In the scatterplot with the first two PCs it can 

visualize the dispersion of the leaf color pattern and 

the influence of leaf nutrient concentrations in their 

samples (Figure 2a). The 7.5 GY 8/8 leaf color 

pattern stood out from the others and it was mainly 

influenced by N, P, S, Cu and K concentrations. The 

samples of 7.5 GY 8/4 leaf color pattern were 

allocated in an intermediate region on scatterplot, 

where Mg and Zn concentrations were determinants 

for their location. It is possible to affirm that this leaf 

color pattern did not present a great N, P, S, Cu and 

K concentrations as the 7.5 GY 8/8 neither a great 

Mn, Ca, Band Fe concentrations as other leaf color 

patterns (7.5 YR 4/2, 2.5 Y 7/6 and 2.5 Y 8/10). The 

7.5 YR 4/2, 2.5 Y 7/6 and 2.5 Y 8/10 leaf color 

patterns were dispersed in the scatterplot under the 

influence mainly of Ca, Mn, B, and Fe 

concentrations, it was not possible to separate them 

by ellipses at 95% probability. 

During leaf senescence, the concentration of 

greater phloem mobility leaf nutrients such as N, P 

and K tend to decrease and the concentration of 

lower phloem mobility nutrients such as Mn, Ca and 

Mg tend to increase (Saur et al. 2000; Marschner 

2011). Thus, leaf color patterns inherent to advanced 

senescence stages such as 7.5 YR 4/2, 2.5 Y 7/6 and 

2.5 Y 8/10 tend to have lower concentration of 

mobile nutrients (Saur et al. 2000; Maillard et al. 

2015). Similarly, leaf color patterns of healthy leaves 

as 7.5 GY 8/8 and 7.5 GY 8/4 present higher 

concentration of mobile nutrients. 

The correlation between some leaf nutrient 

concentrations were strong. Mainly between N and 

P concentration, with great influence on leaf color 

pattern 7.5 GY 8/8 (Figure 2 a). The N and P act 

directly in photosynthetic relationships and 

influence the leaf pigment concentrations (Pimestein 

et al. 2005; Marschner 2011). Therefore, intense 

green leaves present higher concentrations of these 

nutrients and, consequently, higher chlorophyll 

concentrations also (Gitelson and Merzlyak, 1994; 

Clevers and Gitelson 2013; Oliveira et al. 2017). 

Moreover, it is visual the strong correlation between 

leaf Ca and Mn concentrations and their influence in 

leaf color patterns in advanced senescence stages 

(7.5 YR 4/2, 2.5 Y 7/6 and 2.5 Y 8/10). Both 

nutrients are mobilized from roots to shoot during 

the senescence process (Mailard et al., 2015). 

 
Figure 2. Scatterplot between the first and second principal component (PC1 and PC2). a) Leaf color pattern 

samples. b) Groups formed by k-means algorithm. N: Nitrogen; P: Phosphorus; K: Potassium; Ca: Calcium; Mg: 

Magnesium; S: Sulfur; B: Boron; Zn: Zinc; Fe: Iron; Mn: Manganese; Cu: Copper. 

Based on the reducing sum of square within 

the clusters and the cluster tendency, there were two 

clusters by k-means algorithm (Figure 3 a). A cluster 

was formed by the leaf color pattern 7.5 GY 8/8, 

mainly influenced by the concentration of greater 

mobility nutrients: N, P, K, Mg, S and Cu. Another 

cluster formed by the others leaf color patterns 

influenced by the concentration of lower mobility 

nutrients: Ca, Mn, B, Fe and Zn (Figure 2b). As in 

PCA, the SOM provides a greater proximity between 

the 7.5 GY 8/8 and 7.5 GY 8/4 leaf color patterns 

(Figure 4 a). In addition, the others leaf color patterns 

were randomly distributed in the U-matrix and not 

presented clusters determined by respective color 

patterns. By the sum of squares within clusters the 

same clusters of PCA were found by SOM (Figure 

3b, 4b). Although the k-means algorithm presented 

two clusters in both analyses, the sum of squares 

within clusters in the SOM presented lower valuer 

than PCA. Therefore, the SOM presented a slight 

superiority in the data dimensionality reducing and 

classification of leaf color pattern compared to PCA. 

In general, similar results testing both techniques 

presenting slight superiority of SOM has been 

reported (Brosse et al. 2001; Chon et al. 2010). 
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Figure 3. Sum of squares within the cluster by k-means algorithm. a) Choosing cluster numbers by k-means to 

Principal Component Analysis (PCA). b) Choosing cluster numbers by k-means to Self-Organizing Maps (SOM). 

 
Figure 4. Self-Organizing Maps (SOM). a) U-matrix. b) Cluster by k-means algorithm. 

By SOM it is possible to verify the greater 

influence of N, P, K, S and Cu concentrations in 7.5 

GY 8/8 leaf color pattern (Figure 4a; Figure 5). 

Likewise, the influence of B, Ca and Mn in 7.5 YR 

4/2, 2.5 Y 7/6 and 2.5 Y 8/10 leaf color patterns 

located in the upper left of U-matrix, similar result 

observed in PCA (Figure 2a, 4a, 5). However, as 

observed by Kalteh et al. (2008) and Chon et al. 

(2011), the influence of some variables becomes 

more visible in SOM analyses. For example, the 

influence of Fe concentration on 7.5 YR 4/2 and 2.5 

Y 8/10 was verified by SOM, by samples located in 

right region of U-matrix. As well as the influence of 

Zn concentration, which could not clearly detect by 

PCA, that influenced samples in lower right region 

on U-matrix. Moreover, by SOM its possible 

verified the influenced egalitarian of Mg 

concentration in every neuron in U-matrix grid 

(Figure 5).  
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Figure 5. Leaf nutrient concentrations influence in SOM. N: Nitrogen; P: Phosphorus; K: Potassium; Ca: Calcium; 

Mg: Magnesium; S: Sulfur; B: Boron; Zn: Zinc; Fe: Iron; Mn: Manganese; Cu: Copper. 

Conclusions 

By the use of leaf color patterns determined 

by MCCPT it was possible to infer about leaf 

nutrient concentrations in Eucalyptus. The 7.5 GY 

7/8 leaf color pattern present higher concentrations 

of greater mobility nutrients and lower 

concentrations of lower mobility nutrients compared 

to 7.5 GY 8/4, 7.5 YR 4/2, 2.5 Y 7/6 and 2.5 Y 8/10 

leaf color patterns. While 7.5 YR 4/2, 2.5 Y 7/6 and 

2.5 Y 8/10 leaf color patterns presented higher 

concentrations of lower mobility nutrients and lower 

concentrations of lower mobility nutrients. 

Despite leaf color pattern classification in 

only two clusters, the SOM presented a slight 

classification superiority in relation to PCA. 

However, both methods were able to distinguish 

only the healthy leaves 7.5 GY 8/8 from those whose 

were in the leaf senescence process. 
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