
803 

Advances in Forestry Science 
Original Article 

ISSN: 2357-8181 
DOI: http://dx.doi.org/10.34062/afs.v6i4.8590                                                                                 Adv. For. Sci., Cuiabá, v.6, n.4, p.803-809, 2019 

Productive potential of Tectona grandis in Midwest Brazil 

 
Reginaldo Antonio Medeiros 1*, Haroldo Nogueira de Paiva2, Álvaro Augusto Vieira Soares 3, Gustavo Eduardo 

Marcatti4, Fausto Hissahi Takizawa5, Carlos Alberto Ramos Domiciano1, Helio Garcia Leite2 

  
¹ Federal Institute of Mato Grosso, Ramieres Avenue, Distrito Industrial, Cáceres - MT, 78200-000 

² Federal University of Viçosa, Peter Henry Rolfs Avenue, University Campus, Viçosa - MG, 36570-900 

³ Federal University of Uberlândia, João Naves de Ávila Avenue, 2121, Santa Mônica, Uberlândia - MG, 38408-100 
4 Federal University of São João del-Rei, Frei Orlando Square, 170, Downtown, São João Del-Rei, MG, 36307-352. 
5 Teak Resources Company, M. Castelo Branco Avenue, 272, São Miguel,Cáceres, MT, 78200-000 

 
*Author for correspondence: reginaldo.medeiros@cas.ifmt.edu.br 

Received: July 2019 / Accepted: October 2019 / Published: December 2019 

 

Abstract 

This study aimed to assess the productive potential of teak 

plantations in the state of Mato Grosso, Midwest Brazil. We 
modeled the mean annual increment at the age of 12 years 

(MAI12) as a function of climatic, edaphic and physiographic 

variables using artificial neural networks (ANN). The ANNs 

were shown effective in modeling the mean annual increment, 

despite of some inconsistences found for areas for which part 
of the environmental information was not available. The 

greatest proportion of the land covered by our study (62%) 

presented moderate productivity, ranging from 10.24 m3 ha-

1 year-1 to 28.76 m3 ha 1 year 1 MAI12. The highest (MAI12 

> 28.76 m3 ha-1 year-1) and the lowest (MAI12 < 10.24 m3 
ha 1 year 1) productivity areas accounted for 18% and 20% 

of the study area, respectively. Studies comprising a more 

comprehensive coverage of the teak production areas are 

encouraged in order to improve estimation accuracy. 

Keywords: teak, neural networks, productive capacity. 
 

Introduction 

Brazil is a leading country in terms of productivity of tree 

plantations. Through intensive research and continuous 

improvement in silviculture (Gonçalves et al. 2004), pine and 
eucalypt plantations in Brazil present, respectively, average 

national productivities of 30.1 m³ ha 1 year 1 and 36.0 m³ ha 

1 year 1 (Ibá 2019). These two groups of species combined 

comprise 92% of the tree plantations in Brazil (72% eucalypts 

and 20% pines) of a total of 7.83 million hectares. The 
remaining 8% comprise other species such as black wattle 

(Acacia mearnsii), rubber tree (Hevea brasiliensis), parica 

(Schizolobium amazonicum), populus (Populus deltoides) 

and teak (Tectona grandis) (Ibá 2019).  

Among this group, teak plantations area has been 
expanding in the Brazilian forestry sector, largely targeting 

the international market. Even though teak was introduced in 

Brazil in the 1970’s, only recently the area of plantations has 

considerably increased, currently covering an area of about 

93,957 hectares (Ibá 2019).  
The teak plantations in Brazil are concentrated mostly in 

Midwest Brazil, in the state of Mato Grosso (Famato 2013). 

This is one of the largest states in Brazil with an area of 

around 903.357 km², which covers three Brazilian biomes: 

the Amazon rainforest in the north and southeast; the Pantanal 
(Brazilian wetlands) in the south; and the Cerrado (Brazilian 

savannah) in the central and westerns portions. This state is 

economically very important to Brazil due to the extensive 

areas of livestock production and intensive agriculture, 

including the world leading soy production. 
The silviculture of teak in Brazil is currently not as 

developed as compared to the eucalypts and the pines, which 

have been intensively improved in terms of both genetics and 

silvicultural methods, resulting in tremendous gains in 

productivity. The choice of unsuitable sites and genetic 
material, as well as the application of inappropriate 

silvicultural practices, are factors that still hinder 

improvements in productivity of teak plantations in some 

sites in Brazil and in Central America (Tonini et al. 2009).  

According to Golfari (1975), studies related to soil, 
climatic and physiographic characteristics and their relation 

to the silvicultural characteristics of species, should be the 

first steps to be taken before the establishment of forest 

stands. Studies such as edapho-climatic zonings and 

provenance-progeny trials provide a foundation of knowledge 
about the local and regional suitability and the productive 

potential of species, provenance or genotypes. This 

information can then be used to inform silvicultural and 

management decision making. 

Emerging scientific studies that investigate the 
productive potential of teak plantations based on soil, climatic 

and physiographic information in Brazil are timely. It is not 

rare that the choice of area for planting be merely empirical, 

resulting in under-yielding stands (Leite et al. 2006). 

Decision support systems that incorporate the productive 
potential of the site are essential in choosing appropriate sites 

for the cultivation of forest species (Dias et al. 2005). Various 

techniques have been shown to be effective in studies 

involving many environmental variables and their 

relationships.  Such techniques include the association of 
spatial analysis tools (spatial and geostatistics) with 

geographic information systems (GIS), remote sensing and 

artificial intelligence, such as artificial neural networks 

(ANN). These techniques can be used to explore the effects 

of variables (continuous or categorical) on forest 
productivity, being a very useful analytical tool (Ortiz et al. 

2006). Although ANN have been widely explored in other 

scientific fields, the application of ANN in forest modeling is 

relatively new. Several studies involving the use of ANN in 

Brazil have shown its effectiveness for modeling the growth 
and yield of eucalyptus (Martins et al. 2015; Silva Binoti et 

al. 2015). 

In this study we assessed the productive potential of teak 

across the state of Mato Grosso, midwest Brazil, by modeling 

the teak stands productivity as a function of climatic, edaphic 
and physiographic characteristics using artificial neural 

networks.  

 

Materials and Methods 

Characterization of the study area  
We used data were obtained from teak plantations from 

different regions of the state of Mato Grosso, located in the 

Midwest region of Brazil (06° 00' S - 19° 45' S and 50° 06' W 

- 62° 45' W), which includes the geodesic center of South 

America. The state covers three Brazilian biomes: Cerrado, 
Pantanal and the Amazon; and three major river basins: 

Amazon Basin, Platina Basin and the Tocantins Basin. The 

main types of climate are: humid continental equatorial, with 

well-defined dry season in the South Amazon depression; 

humid continental subequatorial, with well-defined dry 
season in the Parecis plateau; and wet and dry continental 
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tropical, in the other plateaus, plains and depressions. The 
rainfall varies from 1000 to 2000 mm per year. The relief is 

characterized by plateaus, depressions and plains with 

altitudes ranging from 100 to 1200 m (Mato Grosso State 

Government 2016). 

 
Variables 

The environmental variables that we related to 

productivity comprised of climatic, edaphic and 

physiographic variables. The climatic variables were: 

maximum, mean and minimum temperatures; wind speed; 
rainfall; potential and real evapotranspiration; relative air 

humidity; solar radiation; water deficit and water excess; and 

duration of the wet season. The edaphic variables were soil 

class, texture, effective depth and drainage. The 

physiographic variables were altitude, aspect, slope and the 
topographic wetness index (TWI). The summary statistics of 

the continuous variables and levels of the categorical 

variables are presented in Table 1 and Table 2. 

 

Table 1. Summary statistics of the climatic and physiographic 
variables used in the training of artificial neural networks to 

assess the productive capacity of teak plantation across state 

of Mato Grosso, Midwest Brazil.  

Variable Minimum Maximum Average 
Standard 

deviation 

Mean anual 
temperature (°C) 

24.3 27.4 26.3 0.4 

Minimum anual 
temperature (°C) 

17.9 22.3 20.3 0.6 

Maximum anual 
temperature (°C) 

30.7 33.2 32.3 0.3 

Annual mean wind 
speed (m s

-1
) 

0.7 1.2 0.9 0.1 

Mean rainfall 
(mm) 

1202.5 2498.4 1767.5 253.9 

Annual mean 
relative air 

humidity (%) 

69.0 83.5 75.9 3.3 

Annual mean 
potential 

evapotranspiration 
(mm) 

1287.5 1505.0 1382.9 41.8 

Daily mean solar 
radiation (MJ m

−2
) 

16.0 18.6 17.5 0.5 

Annual mean real 
evapotranspiration 
(mm) 

1097.4 1331.0 1186.8 34.1 

Annual mean 

water excess (mm) 
47.3 1282.8 581.3 262.1 

Annual mean 
water deficit  (mm) 

74.5 349.6 196.1 48.7 

Annual mean 

duration of the dry 
season (months) 

2.3 5.2 4.0 0.5 

Altitude (m) 
64.0 1161.0 335.7 141.0 

Slope (%) 
0.0 419.6 6.2 6.4 

Aspect (°) -1.0 359.9 174.7 105.4 

Topographic 

wetness index 
2.1 29.4 8.4 2.6 

 

The climatic variables were obtained from Xavier et al. 

(2015). The authors developed a daily high-resolution grid of 

meteorological variables for Brazil, from 1980 to 2013, with 

a resolution of 0.25° × 0.25° (about 28 × 28 km). The 
interpolated variables were the temperatures (maximum and 

minimum), solar radiation, relative humidity, wind speed, 

rainfall and potential evapotranspiration; which were 

obtained from 3625 rain gauges and 735 weather stations. 

Table 2. Levels of the edaphic variables used in the training 
of artificial neural networks to asses the productive capacity 

of teak plantation across state of Mato Grosso, Midwest 

Brazil. 
Variable Levels 

Soil class* 

Rocky outcrop (Afloramentos de rochas) 

Acrisol (Argissolos Amarelos Distróficos) 
Acrisol (Argissolos Vermelho-Amarelos 
Distróficos ) 
Acrisol (Argissolos Vermelho-Amarelos 

Eutróficos) 
Acrisol (Argissolos Vermelhos Distróficos) 
Acrisol (Argissolos Vermelhos Eutróficos) 
Cambisols (Cambissolos Háplicos Tb 

Distróficos) 
Cambisols (Cambissolos Háplicos Tb 
Eutróficos) 

Chernozems (Chernossolos Argilúvicos) 
Gleysols (Gleissolos Háplicos Tb Distróficos) 
Ferrasols (Latossolos Vermelho-Amarelos 
Distróficos) 

Ferrasols (Latossolos Vermelhos 
Distroférricos) 
Ferrasols (Latossolos Vermelhos Distróficos) 
Fluvisols (Neossolos Flúvicos Tb Distróficos) 

Leptsols (Neossolos Litólicos Distróficos) 
Arenosols (Neossolos Quartzarênicos 
Órticos) 
Nitisol (Nitossolos Vermelhos Distróficos) 

Histosols (Organossolos Háplicos) 
Planosols (Planossolos Háplicos Eutróficos) 
Solonetz (Planossolos Nátricos) 
Planosols (Plintossolos Háplicos Distróficos) 

Plithosols (Plintossolos Pétricos) 

Soil texture** 

Medium Clayey/Medium 
Medium/Clayey 
Sandy/Clayey 
Sandy/Medium 

Clayey 
Clayey/ Very clayey 
Sandy 

Medium/ Medium gravelly 
Very clayey 
Rocky outcrop 
Indeterminable 

Effective soil 
depth 

Very deep (>200 cm) 

Deep (100 cm to 200 cm) 
Intermediate (50 cm to 100 cm) 
Shallow (50 cm) 

Drainage 

Very poorly drained 
Poorly drained 

Imperfectly drained 
Moderately drained 
Well drained 
Very drained 

Strongly drained 
Excessively drained 

*Brazilian classification with the closest correspondent in 

FAO/WRB’s classification; **The first texture class 
corresponds to the Horizon A and the second to the Horizon 

B. When only one class is given, it corresponds to both 

horizons A and B. 

The mean temperature was obtained by averaging the 

maximum and minimum temperatures. The duration of the 

dry season was defined as the period with monthly rainfall 

equal to or less than 50 mm (Keogh 1987). The real 
evapotranspiration, water deficit and water excess were 

obtained by calculating the water balance, using the 

Thornthwaite and Mather method (1955). For this calculation 

the value for available water capacity of the soil (AWC) was 

set at 300 mm, which is the recommended value for forested 
soils (Pereira et al. 2002). 
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Data regarding soil class and texture was obtained from 
soil maps (1:250,000), which were originally used in the 

preparation of the Socio-Economic-Ecological Zoning of 

Mato Grosso (ZSEE-MT). These maps were made available 

by the Secretary of State for Planning of the state of Mato 

Grosso (Seplan 2001). The soil classes were updated to the 
third level of classification of the current Brazilian system of 

soil classification (SiBCS), according to Santos et al. (2011; 

2013). The data for drainage and effective depth was obtained 

from the soil class characteristics described by Santos et al.  

(2013). 
The variables altitude, aspect and slope were derived 

from the digital elevation model from the SRTM (Shuttle 

Radar Topography Mission) of the National Aeronautics and 

Space Administration of the United States of America 

(NASA), which mapped the earth’s surface elevation by 
means of radar interferometry, producing digital elevation 

models (DEM) with spatial resolution of 30 m (obtained in 

http://earthexplorer.usgs.gov). 

The topographic wetness index (TWI), which is used to 

quantify the effect of topography on hydrological processes 
(Qin et al. 2011; Sørensen et al. 2006), was calculated 

according to the methodology proposed by Moore et al.  

(1993) (equation 1): 

tan

SA
TWI Ln



 
  

 
                                                   (1) 

where SA is the specific working area (accumulated flow), 

which is the area of contribution per unit of width, orthogonal 
to the direction of flow, multiplied by the grid size, in m², and 

β is the slope (degrees).  

 

We used the mean annual increment at the age of 12 years 

(MAI12) as a measure of productivity. This age is half of the 
expected rotation for teak in this region. We decided to 

include in the analysis, stands which did not reach this age, 

but which were close to it, i.e. stands which were 9 and 10 

years old. By doing so, we considerably increased our dataset, 

allowing us to cover a larger area of the state. Therefore, it 
was necessary to project the net yield (including the volumes  

removed by thinning) of those stands to the age of 12 years. 

For that, equation 2 was fitted though ordinary mean squares 

using all available yield data. Yield at 12 years was estimated 

with equation 3, which uses the ration between the observed 
and estimated yield at a current age to adjust the estimated 

yield at 12 years (Campos and Leite 2017). 

8.28112
5.94012

ˆ exp
Age

Y

 
 
   (R² = 0.55)                           ( 2) 

11 (5.94012 8.28112 )5.94012 8.28112(12)

12
ˆ exp exp cAge

cY Y
               ( 3) 

where 𝑌̂ is the yield at a given age; 𝑌̂12  is the estimated yield 

at 12 years; 𝑌𝑐 is the observed yield at a current age (Agec). 
 
Modeling 

We used artificial neural networks (ANN) to relate the 

IMA12 to the environmental variables mentioned in the 

previous section, in order to assess the patterns of the 

productivity of teak plantations across the state of Mato 
Grosso. 

We used the software Neuroforest® 

(http://neuroforest.ucoz.com), version 4.0, for training and 

applying the ANN. The ANN’s were of the type Multilayer 

Perceptron (MLP), with three layers: the inputs, the hidden 
layer and the outputs. The training algorithm used was the 

resilient propagation (Rprop +) (Heaton 2011). 

The input layer had 39 neurons given the number of 
inputs, which derived from the climatic, edaphic and 

physiographic variables. The continuous variables were 

represented by only one neuron, whereas the categorical 

variables had one neuron for each level. The hidden layer had 

25 neurons and the output layer had a single neuron which 
corresponds to the response variable (IMA12). The activation 

function used for the hidden and output layers was of the 

sigmoid type. The stopping training criteria was met either 

when the average error reached 0.0001 or when the number 

of cycles reached 3000. 
The number of neurons in the hidden layer was chosen 

after a pilot analysis (not shown) when we tested several 

different sizes of hidden layer, training 10 ANN’s for each 

size. All of the data was used for the training.  

The best ANN was the one that resulted in a largest  
Pearson correlation coefficient between the observed and 

estimated values (𝑟𝑦𝑦̂) (equation 5 and equation 6), and the 

smallest root mean squared error (RMSE) (equation 7). Plots 
of the distribution of relative residuals (RR, equation. 8) were 

also used to aid the choice of the best ANN. 
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  

 
                                                 (8) 

where 𝑦𝑖  e 𝑦𝑖 are, respectively, the observed and estimated 

values of IMA12; i is the a ith observed values; 𝑦 is the mean 

value of y; 𝑦𝑚 is the mean value of the estimates of y; 𝑛 is the 
number of observations. 

 

The software ArcGIS version 10.1, developed by 

Environmental Systems Research Institute (Esri 2012) was 
used for data processing and for map building. The 

productivity classes were established by adding or subtracting 

one standard deviation (sd) of the MAI12 such as: 

 

 High productivity: MAI12 > 𝑀𝐴𝐼12
̅̅ ̅̅ ̅̅ ̅̅  + 1 sd; 

 Intermediate productivity: 𝑀𝐴𝐼12
̅̅ ̅̅ ̅̅ ̅̅  + 1 sd > MAI12 > 

𝑀𝐴𝐼12
̅̅ ̅̅ ̅̅ ̅̅  - 1 sd;  

 Low productivity: MAI12 < 𝑀𝐴𝐼12
̅̅ ̅̅ ̅̅ ̅̅  - 1 sd 

The average mean annual increment (𝑀𝐴𝐼12
̅̅ ̅̅ ̅̅ ̅̅ ) refers to the 

average MAI12 after spatialization of the environmental 
variables, obtained in the conversion of the points features in 

raster. 

The overall performance (OP) of the classification was 

assessed by means of confusion matrix (Rodrigues et al.  

2014), which is related to the accuracy or the degree of 
agreement between observed and estimated values in the 

productivity classes. The Kappa index (KI) (Landis & Koch 

1977) was used to assess the accuracy or quality of the 
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estimates between the observed and the values estimated by 
the ANN, in their productivity classes.  

The OP was calculated through equation 9; and the KI, 

which ranges from 0 (poor quality) to 1 (excellent), was 

calculated through equation 10 and equation 11. 

D
OP

T

 
  
 

                                                                      (9) 

D Q
IK

T Q

 
  

 

                                                               (10) 

* *
...

EO EC EOn ECn
Q

T T

 
   
 

                         (11) 

where IK is the Kappa index; OP is the overall performance;  

D is the sum of the values in the matrix’s main diagonal; Q is 
the ratio between the error of commission and the error of 

omission; T is the total of samples or squares from the grid; 

CE is the commission error and OE is the omission error. 

 
Results  

The correlation coefficient between the estimates and the 
observed MAI12 (𝑟𝑦𝑦̂) and the root mean squared error 

(RMSE) were, respectively, 0.88 and 2.8. The plot of the 

estimates against the observed values and the residual 
dispersion are shown in Figure 1.  

 

 

 

Figure 1: Estimates for the mean annual increment at 12 years 

old (IMA12) against their respective observed values (a) and 

dispersion of the relative error (b) from the best ANN trained 

to estimate the IMA12 of Tectona grandis plantations in 

Midwest Brazil, based on environmental variables. 

The global performance, i.e. the degree of agreement  
between the observed and the estimated values of the RNA, 

for the lowest, intermediate and highest productivity classes 

were, respectively, 93%, 76% and 80%. The Kappa index of 

0.63 indicates a good agreement between the classification 

based on the observed and estimated values. The estimated 
MAI12 ranged from 1.73 m3 ha-1 year-1 to 31.21 m3 ha-1 year-

1, with a mean of 19.5 m3 ha-1 year-1, and a coefficient of 

variation of 47.48%. The high productivity areas, established 

as MAI12 > 28.76 m3 ha-1 year-1, were concentrated in the 
south, west and northwest regions, covering 18% of the 

state’s area. The low productivity class, with MAI12 < 10.24 

m3 ha-1 year-1, covered 20% of the land and was located in the 

Midwest region of the state. The greatest proportion of the 

state’s land, i.e. 68%, was classified in the intermediate 
productivity class with 10.24 m3 ha-1 year-1> MAI12 > 28.76 

m3 ha-1 year-1 (Figure 2).  

 

Discussion 

Estimating forest productivity and potential productive 
capacity using environmental variables constitutes a useful 

tool for silviculture and forest management (Jiang et al. 2014; 

Bueis et al. 2016). It can potentially aid the decision making 

process in forest planning, such as land acquisition, 

provenance or genotype selection and planning of 
silvicultural treatments (Scolforo et al. 2013). 

The artificial neural network stands out as a promising 

tool for this type of modeling (Cosenza et al. 2017). In our 

work, the effectiveness of the ANN was supported by the high 

value of 𝑟𝑦𝑦̂ (0.88), the low value of RMSE (2.8%) and the 

satisfactory dispersion in the error and observed values vs 

estimates graphs (Figure 1). In addition, the global 

performances and Kappa index indicated that the 
classifications were consistently reliable (Landis & Koch 

1977). 

These results could have had even greater accuracy if 

more sample points distributed across the state were included 

in the ANN training. From the total state area grid, 0.12% was 
used in this work. This was the maximum on ground 

information which was made available and for which a 

reasonable number of environmental variables could be 

collected. Also, the soil depth was the only variable with data 

available for 100% of the state land. 
There are some instances where inconsistencies between 

our classification or estimates, and real values of productivity 

not covered by our sampling area, are evident. One example 

of this is in the extreme over or underestimation of IMA12. 

These inconsistencies may arise from a lack of variables that 
play an important role in restricting or favoring the growth of 

teak trees. For example, the southeastern region of Mato 

Grosso state was classified as having high productivity. Some 

areas in this region reach altitudes over 1000 m, which has 

already been shown to restrict the growth of teak trees 
(Pandey & Brow 2000; Midgley et al. 2015). The greatest 

altitude recorded in our data was only 400m and thus the 

growth of teak trees in our sites would not be restricted by 

altitude. However, estimates for areas of the state which are 

actually higher than 1000m would lack the altitude growth 
restriction. 

Further, in the northwest region, high levels of 

productivity were expected. However, there was no observed 

data available and some important environmental variables  

were missing.  Such variables include water excess and 
minimum temperature, which have also been shown to restrict 

the growth of teak trees (Pandey & Brow 2000; Midgley et al. 

2015).  We were therefore unable to test whether observed 

IMA levels were comparable to expected levels in this area. 

According to Braga et al. (2000), during the training, the 
ANN extracts the characteristics necessary to represent the 

information contained in the data and generate responses to a 

given problem. The consistency of the outputs for cases not 

given in the learning is related to the ANN’s ability of 

generalization. Very unbalanced data used in the learning 
may result in biased estimation, i.e., towards values close to 

the more frequent values in the data (Silva et al. 2010). 
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Figure 2. Productive potential estimated by artificial neural networks for Tectona grandis stands in Midwest Brazil, using climatic, 
edaphic and physiographic variables. Despite these drawbacks, we highlight that our work is the first in Brazil to map the productive 

potential of teak plantations. As already mentioned, the silviculture of teak is still in the early stages of development in Brazil, 

lacking the initiative demonstrated in this paper.  Here we show how ANN analysis can be used to create land suitability maps, and 

reasonable yield expectations for use by government agencies, companies and foresters looking to competitively produce teak. 

 

More comprehensive environmental data, as well as 

variables related to silvicultural aspects such genotypes, 

initial spacing, weed control, fertilization, thinning intensity 
and others, is becoming ever more available as teak 

plantations expands throughout the state of Mato Grosso and 

other regions of Brazil. Using this data will allow for the 

creation of more precise and robust productive capacity 

mappings, contributing to the development of teak 
silviculture in Brazil and potentially in regions with similar 

environmental characteristics. 

 

Conclusion 

RNA were efficient to express the productive potential 
only for areas where there is observed productivity data. 

To assess the productive potential with RNA, a 

representative database of environmental conditions is 

needed for more accurate estimates in the training and 

generalization. More specific studies are necessary involving 

management regimes, individual effect of environmental 

variables and also interactions between them over the 

productivity of teak in a complete rotation. 
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