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Abstract 

The aim of this study was to examine the major factors 

influencing the occurrence of fires by analyzing the frequency 

ratio (FR) of areas with the greatest occurrence of prescribed 

burning and wildfire and to generate the susceptibility map of 

these occurrences for the Indigenous Territory of Kraholândia 

(Tocantins state), Brazil. A supervised classification method 

was apply using the Mahalanobis algorithm, and the fire scars 

were delimited from 2003 to 2014 based on images obtained 

from the Landsat-5, CBERS-2, ResourceSat-1, and Landsat-

8 satellites. The higher recurrence fire class was using as a 

reference to assess the following variables: topography; type 

of land use; soil classification; and distances from human 

settlement, roads, and waterways. The FR of prescribed 

burning or wildfire occurrences was determined for each 

variable and a subsequent map for all the variables was create 

wiht the FR value of the sum of each pixel was denoted as the 

fire susceptibility index (FSI). The factors showing the 

greatest correlation with the highest frequencies of prescribed 

burning and wildfire occurrences were vegetation types of 

farmland and rock field, areas used for agriculture, areas with 

slopes higher than 30%, altitudes above 350 m, areas in 

ridgelines, and proximity to roads. The FSI map can be an 

effective tool in planning and controlling forest fires.  

Keywords: Cerrado. Frequency ratio. Recurrence. Remote 

sensing. 

 

Introduction 

In Brazil, the practice of the biomass burning occurs in 

different cultures for varied purposes, as maintaining pasture 

for livestock or expanding agricultural frontiers (Piromal et 

al. 2008). This fact is justified because the controlled burning 

is an inexpensive method for preparing land for crop 

cultivation, renew pastures and remove unwanted vegetation 

and fallen trees. Moreover, the resulting ashes can be enriched 

the soil with nutrients that enhance soil fertility and increase 

crop productivity (Lara et al. 2007). 

However, the last four decades have witnessed an 

increase in the incidences of forest fires or wildfires around 

the world that has attracted the attention of the scientific 

community with respect to the correlations of human 

activities and the effects in the ecosystem (Kehrwald et al. 

2013). The vulnerability of the forest area to a fire is 

dependent on diverse features such as vegetation, topography, 

and distance from roads, rivers, and human settlements 

(Jaiswal et al. 2002), beyond the weather. 

With the ever-increasing human occupancy and 

conversion of the Cerrado into agriculture, the frequent 

wildfires have consistently affected the protected areas in this 

biome (Medeiros and Fiedler 2004). However, Mistry et al. 

(2005) studied the indigenous population of Krahô in 

Tocantins state and they were finding that the use of fires in 

certain periods protects and maintains the Cerrado.   

The state of Tocantins includes the largest remnants of the 

Brazilian Cerrado (Sano and Almeida 1998) and it is among 

the Brazilian states most affected by forest fires (Pivello 

2011). In this context, Lazzarini et al. (2012) emphasize the 

importance of the researches about the wildfires in 

susceptible areas using the knowledge of the influence factors 

(Hong et al. 2017). Thus, their results can be used for the 

prevention and suppression of wildfires (Wang and Niu 2016) 

and to prevent the degradation of biodiversity. 

In addition, many studies have shown a good probabilistic 

model for the fire occurrence (as the frequency ratio) by using 

topographical and social data (e.g. Pradhan et al. 2007; 

Daldegan et al. 2014; Pereira Júnior et al. 2014). However, 

the studies about fire susceptibility indexes are scarce in 

Tocantins state (cerrado). Thus, the aim of this study was to 

examine the major factors influencing the occurrence of fires 

by analyzing the frequency ratio (FR) of areas with the 

greatest occurrence of prescribed burning and wildfire and to 

generate a susceptibility map of these occurrences for the 

indigenous territory of Kraholândia (Tocantins state), Brazil. 

 

Material and methods 

The study area, the indigenous territory of Krahôlandia, 

is located on the northeastern portion of the state of Tocantins. 

This area lies approximately 100 km from the capital city 

(Palmas) between longitudes 47°05′W and 47°50′W and 

latitudes 07°50′S and 08°50′S. A portion of this area is 

included in the municipality of Goiatins and the remainder in 

the municipality of Itacajá. 

The indigenous territory Krahôlandia was approved in 

1990 and it occupies approximately 3,608 km2. This area is 

located on the Tocantins River basin, and much of its 

perimeter has border by the Red and Manuel Alves rivers. The 

population is approximately 2,000 and it is clustered in 26 

villages of varying sizes and at the time of this study the 

Krahô people practicing agriculture by cutting and burning 

the forest and planting crops on the ashes (Mistry et al. 2005). 

This region is characterized as C2wA'a' (humid/sub-

humid with moderate water stress in winter), by Thornthwaite 

climate classification (Tocantins 2012). The rainy season is 

well-defined (from October to April) with 75% of the rainfall 

occurs during these period that is followed by a dry season, 

when the occurrence of wildfires is high. The mean annual 

rainfall ranges from 1,600 to 1,800 mm and the mean annual 

temperature ranges from 26 to 27 ºC.  

The scarring caused by prescribed burning and wildfire 

occurred in this region from 2003 to 2014 were delimited 

using images of four different satellites to ensure complete 

temporal and spatial coverage of the study area (Table 1). 

These images were initially concentrated from the months of 
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June to September, however, due to visualization difficulties 

caused by intense cloud cover, the collection of images 

expanded to October–December, and thus they were used 51 

different images, as shown in Table 1, for the representation 

of the period with the highest occurrence of wildfires. 

 
Table 1. Description of the images used for delimitation of fire scarring / 

wildfires in Indigenous Territory Krahôlandia, from 2003 to 2014, which each 

date represents an image. 

Ye
ar 

Satellite 
Path/R

ow 

Dates 

I II III IV 

200

3 
Landsat 5 

222/65 
jul/0

9 

ago/

10 
- - 

222/66 
jul/0

9 
ago/
10 

set/1
1 

 

       

200

4 
Landsat 5 

222/65 
out/1

5 
- - - 

222/66 
jun/2

5 
ago/
12 

set/2
9 

out/1
5        

200

5 
Landsat 5 

222/65 
jul/1

4 

set/1

6 
- - 

222/66 
jul/1

4 
ago/
15 

set/1
6 

- 
       

200
6 

Landsat 5 
222/65 

ago/

02 

set/0

3 
- - 

222/66 
jul/1

7 
ago/
18 

nov/
06 

- 

CBERS 2 
158/10

9 

set/0

3 
   

       

200

7 
Landsat 5 

222/65 
jun/1

8 
ago/
05 

set/0
6 

- 

222/66 
jul/2

0 

set/0

6 
- - 

       

200

8 

Landsat 5 

222/65 
jul/2

2 
set/0

8 
- - 

222/66 
jul/2

2 

set/0

8 
- - 

CBERS 2 
159/10

9 

set/1

9 
- - - 

       

200

9 
Landsat 5 

222/65 
jul/0

9 
- - - 

222/66 
jul/0

9 

set/1

1 
- - 

       

201

0 
Landsat 5 

222/65 
set/1

4 
out/1

6 
- - 

222/66 
jul/2

8 

set/1

4 

out/1

6 
- 

       

201

1 
Landsat 5 

222/65 
set/1

7 
- - - 

222/66 
ago/

16 

set/0

1 

set/1

7 
- 

       
201

2 
Resourcesa

t-1 
327/82 

ago/
17 

set/1
0 

out/2
8 

- 
       

201

3 
Landsat 8 222/66 

jul/2

0 

set/2

2 

nov/

25 
- 

       
201

4 
Landsat 8 222/66 

jul/2

3 

set/0

9 
- - 

 

The scarred landscape was detected by Daldegan et al. 

(2014) methodology with the Mahalanobis algorithm applied 

to perform the supervised classification (steps for this 

procedure depict in Figure 1). After this process, the 

indigenous territory was subdivided in four distinct categories 

based on the frequency of fire occurrences: NQ, areas with no 

incidences of fire; REC1, areas burned for 1–4 times; REC2, 

areas burned 5–8 times and; REC3, areas burned 9–12 times 

(Table 2). 

 
Figure 1. The sequence methodology used in this study. 

 

Table 2. Fire occurrence number for each class 

Class 

Number of  

times 

burned 

Burned area in the year of occurrence 
(ha) 

NQ 0 29,764.47 
   

REC1 

1 19,102.10 

2 21,284.93 
3 29,320.25 

4 35,988.06 

   

REC2 

5 37,528.04 

6 35,223.33 
7 33,036.45 

8 26,872.64 

   

REC3 

9 18,641.16 

10 12,597.85 

11 5,818.84 
12 1,692.92 

NQ =areas with no incidences of fire. REC1 = areas burned for 1–4 times. 

REC2 = areas burned 5–8 times. REC3 = areas burned 9–12 times.  

The next calculations were basis on the data obtained 

from the map shown in Figure 2 that was produced after the 

supervised classification and with it use of the four distinct 

categories of the frequency of fire occurrences, which 

displays the regions with the most forest fires occurring 

during the study period in the REC3 class areas. The GIS 

databases used to generate the results are described in 

Table 3 and all raster images generated in this work were 

standardized in a pixel size of 30 × 30 m using the Nearest 
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Neighbor method (Richards 1999).

 
Figure 2. Classes of occurrence (fires / wildfires) 

Table 3. Database feature used 

Layer data 
Data 

format 

Source of 

data 
Scale 

Type of land use polygon SEPLAN 1:100,000 

Roads raster Landsat 8 
30 m x 30 

m 
Waterways line SEPLAN 1:100,000 

Soil 

classification 
polygon SEPLAN 1:1,000,000 

City point SEPLAN 1:100,000 

Human 

settlement 
raster RapidEye 5 m x 5 m 

Topography raster NASA/SRTM 30 m x 30m 
SEPLAN = Department of Planning and Modernization of Public Management 

of the State of Tocantins. 
The activities performed by the indigenous brigades 

were registered in the fire occurrence reports (FiOR). 

These documents included a pair of location coordinates 

where managed fires occurred and this information were 

systematized and spatialize and then included in the 

geographic database. 

The topographic factor considered in the analysis 

include topographic wetness index (TWI) and the 

topographic position index (TPI). The TWI refers to the 

tendency of water to accumulate in the basin due to 

gravitational force moving water downstream (Pourtaghi et 

al. 2015). Thus, higher values indicate greater TWI 

formation of water flow at the surface and, consequently, 

higher saturation in these environments. The TWI was 

calculated by using the Moore et al. (1991) formula. 

The topographic position index (TPI) is characterized 

by the difference in the elevation between a pixel and the 

average of its neighbors. A positive value indicates that a 

pixel has a higher altitude than its neighbors do, and a 

negative value indicates the converse. The TPI was 

classified according Dickson et al. (2005): canyons: TPI ≤ 

−8; gentle slope: −8 <TPI ≤ 8, with slope < 6º; steep slope: 

−8 <TPI ≤ 8, with slope ≥ 6º and; ridges: TPI ≥ 8. The data 

on the slope maps, TWI, TPI, and the orientation of the 

slopes were derived from the SRTM data (Farr et al. 2007). 

The Department of Planning and Modernization of 

Public Management of the State of Tocantins (SEPLAN) 

conducted a study of land use and occupation for the 2007 

year. The remaining area consisted of native Cerrado 

vegetation in the following proportions (Figure 3): cerrado 

restricted sense (50.0%); piparian forest or gallery forest 

(21.0%); grassland (20.6%); stone grassland (1.6%); 

cerradão (1.5%); semi-deciduous alluvial forest (1.8%), 

and veredas (1.1%). Beaches, dunes, and inland water 

bodies comprised an area lower than 0.05% (Tocantins 

2012). 

 
Figure 3. Land use and occupation. 
 

Additional factors were evaluated in terms of any 

relationship to fire occurrence, including soil class, human 

agglomeration distance (m), distance from watercourses 

(m), road distance (m), slope (%), and altitude (m). The 

maps in Figure 4 show the distribution class for each of the 

nine evaluated factors. 

The model frequency ratio (FR) establishes the 

relationship between the distributions of areas vulnerable 

to fire incidents and analyzes each factor, as well as the 

correlation between these factors and the study area 

(Pradhan et al. 2007). Thus, this model was considered 

simple (Pourtaghi et al. 2015) and it was used with 

successful as probabilistic model among the variables in 

the multiple maps (Oh et al. 2011). Finally, the FR values 

were calculated based on Pourtaghi et al. (2015) with the 

following adaptations: 

FR=(A/B) / (H/L) 

where A = the number of pixels affected by fire in the class factor 

or the number of fire occurrence reports (FiOR) in the class factor; 

B = the total number of pixels in the class factor or the total 

number of fire occurrence reports (FiOR) in the indigenous 

territory; H = the total number of pixels in the class factor; and L 
= the cumulative number of pixels in the entire study area 

(3,409,679 pixels). 
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Figure 4. Distance of the study area from human settlements (A), roads (B), 

waterways (C), slope aspect (D), soil class (E), declivity (F), TPI (G), TWI 

(H) and altitude (I). 

 

The FR represents the likelihood of the occurrence of 

the variable under study (Sujatha et al. 2013) and the values 

higher than one indicate a high correlation and values lower 

than one indicate a low correlation (Lee and Pradhan 2007). 

These values were calculated only for the REC3 category 

for each of the nine evaluated factors, because these areas 

represented the locals with the greatest occurrence of 

prescribed burning and wildfire. 

Mohan and Jeyaseelan (2010) generated a map of 

susceptibility to landslides using FRs that were correlated 

with each pixel. The FR in this study can be similarly use to 

generate maps of fire susceptibility indexes (FSIs). To 

calculate the index, the sum value of each pixel of the raster 

images was overlaid according to the following formula by 

Pradhan et al. (2007): 

𝐹𝑆𝐼 =  𝐹𝑅1 +  𝐹𝑅2 + ⋯ +  𝐹𝑅𝑛 

The resulting map of calculated FSI was group into five 

distinct classes of fire risk: low, moderate, high, very high, 

and extreme. The five different maps were generated based 

on five frequency distribution models: equal intervals, 

geometrical intervals, natural breaks, standard deviation, and 

quantiles. To assess the most suitable fire susceptibility map 

for the study region, each map was cross-reference with the 

geographic coordinates of the FiOR generated by the 

indigenous combat brigade formed by the National 

Prevention and Combating Forest Fire Center (PrevFogo), 

which is link to the Brazilian Institute of Environment and 

Renewable Natural Resources (IBAMA). The data refer to all 

incidents recorded from 2013 to 2014 (86 total cases of 

fighting forest fires). The most appropriate risk map for the 

indigenous territory Krahôlandia was select based on the 

highest value between the sums of FR values for the high-

risk, very high-risk, and extreme risk classes according to: 

𝐹𝑆𝐼𝑖𝑛𝑑 =  𝐹𝑅ℎ𝑖𝑔ℎ + 𝐹𝑅𝑣𝑒𝑟𝑦−ℎ𝑖𝑔ℎ +  𝐹𝑅𝑒𝑥𝑡𝑟𝑒𝑚𝑎 

 
where FFSIind = the map susceptibility index; FRhigh = the FR value 

in the high susceptibility class; FRvery-high = the FR value in the very-
high susceptibility class; and FRextreme = the FR value in the extreme 

susceptibility class. 

 

Results 

The frequency ratio (FR) values were calculated as the 

number of pixels and are represented in Table 4, where each 

class is associated with a specific FR value that expresses a 

high or low correlation with fire occurrence. In the FR data in 

Table 4, the environment for agriculture and occupancy of 

vegetation of vereda or stone grassland have been 

emphasized. For the slope, it was observed that areas above 

30% slope were most affect by the occurrences of managed 

fires and forest fires, it is including areas at altitudes higher 

than 350 m, with an emphasis on the areas at higher than 450 

m of altitude, with an FR value of 37.51.  

 
Table 4. The FR values for the variables of distance of the study area from human settlement, waterways, and roads and declivity, 

altitude, TWI, TPI, slope orientation, soil class, and land use and occupation 

Class A B A/B Aclass (%) FR 

Type of land use 

Riparian forest 658 61,143 0.01 0.02 0.60 

Stone grassland 5,537 53,421 0.10 0.02 6.62 

Cerradão 200 52,656 0.00 0.02 0.25 

Grassland 74,521 700,639 0.11 0.21 0.52 

Agriculture 24,423 66,649 0.37 0.02 18.75 

Vereda 4,698 36,350 0.13 0.01 12.12 

Cerrado restricted sense 303,697 1,718,248 0.18 0.50 0.35 

Gallery forest 16,239 717,581 0.02 0.21 0.11 

       

Slope (%) 

0 |-- 5 204,245 1,401,198 0.15 0.41 0.35 

5 |-- 10 148,811 1,132,418 0.13 0.33 0.40 

10 |-- 15 45,268 410,245 0.11 0.12 0.92 

15 |-- 30 28,684 355,104 0.08 0.10 0.78 

30 |-- 45 3,017 73,601 0.04 0.02 1.90 
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> 45 698 37,210 0.02 0.01 1.72 

       

Altitude (m) 

< 250 87,598 641,276 0.14 0.19 0.73 

250 |-- 300  231,661 1,672,979 0.14 0.49 0.28 

300 |-- 350  105,319 996,249 0.11 0.29 0.36 

350 |-- 400  4,873 74,670 0.07 0.02 2.98 

400 |-- 450  610 16,845 0.04 0.00 7.33 

> 450 662 7,757 0.09 0.00 37.51 

       

TWI 

< 5 79,719 650,928 0.12 0.19 0.64 

5 |-- 10 105,779 945,350 0.11 0.28 0.40 

> 10 245,225 1,813,498 0.14 0.53 0.25 

       

TPI 

Canyons - 11 0.00 0.00 0.00 

Gentle slope 360,490 2,595,284 0.14 0.76 0.18 

Steep slope 69,635 806,663 0.09 0.24 0.36 

Ridges 598 7,818 0.08 0.00 33.36 

       

Slope aspect 

Flat 1,662 11,403 0.15 0.00 43.58 

North 56,041 421,060 0.13 0.12 1.08 

Northeast 50,016 415,194 0.12 0.12 0.99 

East 47,871 437,598 0.11 0.13 0.85 

Southeast 45,584 422,361 0.11 0.12 0.87 

South 46,479 402,492 0.12 0.12 0.98 

South-west 54,533 408,331 0.13 0.12 1.12 

West 65,025 448,416 0.15 0.13 1.10 

Northwest 63,512 442,921 0.14 0.13 1.10 

       

Soil classification 

Petric Plinthosols 227,304 1,440,233 0.16 0.42 0.37 

Haplic Plinthosols 2,066 23,996 0.09 0.01 12.23 

Yellow Oxisol 14,341 215,317 0.07 0.06 1.05 

Litolic Neosol 98,131 736,527 0.13 0.22 0.62 

Quartzarenic Neosol 88,891 993,606 0.09 0.29 0.31 

       

Distances from human settlement (m) 

0 |-- 2,500 53,563 515,572 0.10 0.15 0.69 

2,500 |-- 5,000 137,076 939,098 0.15 0.28 0.53 

5,000 |-- 7,500 90,619 604,563 0.15 0.18 0.85 

7,500 |-- 10,000 68,014 405,988 0.17 0.12 1.41 

> 10,000 81,461 944,458 0.09 0.28 0.31 

       

Distances from waterways (m) 

0 |-- 150 8,553 199,067 0.04 0.06 0.74 

150 |-- 300 16,096 165,662 0.10 0.05 2.00 

300 |-- 450 18,981 158,524 0.12 0.05 2.58 

450 |-- 600 20,081 153,239 0.13 0.04 2.92 

> 600 367,022 2,733,187 0.13 0.80 0.17 
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Distances from roads (m) 

0 |-- 150 25,791 132,302 0.19 0.04 5.02 

150 |-- 300 19,395 116,130 0.17 0.03 4.90 

300 |-- 450 17,581 117,407 0.15 0.03 4.35 

450 |-- 600 16,334 116,898 0.14 0.03 4.08 

> 600 351,632 2,926,942 0.12 0.86 0.14 

A: the number of pixels in the factor affected by the fire class; B: the number of pixels occupied by the factor of class.

The TWI index was highest in areas with the lowest 

accumulation of water; however, the FR value was lower 

than one and this is not representing a correlation with fire 

occurrence. The TPI had a significant amount of FR on the 

ridgeline, with an FR value of 33.36. 

Except for the flat areas (FR = 43.58), the slopes 

aspects had low discrepancies between classes. The areas 

in the north, southwest, west, and northwest directions 

demonstrated a mild correlation with the burned areas, with 

FR values of 1.08, 1.12, 1.10, and 1.10, respectively. 

In the soil class factor, the Plinthosol Haplic had shown 

the highest FR value (12.23). The Yellow Oxisol had 

shown a mild correlation with the incidence of fire (FR = 

1.05). As for overcrowding distances, the only class to be 

highlight was place in the 7.5–10.0 km area, with an FR of 

1.41. All other values were lower than 0.85, including areas 

below 2.5 km with an FR of 0.69. Longer distances from 

roads significantly influenced fire activity in the region, as 

separation from roads gradually narrowed the factor from 

5.02 (0–150 m away) to 4.08 (450–600 m away), with 

distances higher than 600 m did not show any association 

with fire (FR = 0.14). 

Distances to watercourses showed a significant 

correlation with the results of the burned areas, but only 

from 150 to 600 m, with FR values of 2.00–2.92. At 

distances, less than 150 m and higher than 600 m away 

from watercourses, the FR values were lower than one.  

The calculation of the FSI resulted in an image with a 

value distribution among 2.95-90.93, but several of these 

values were accumulated in the first class. The frequency 

of FSI values were analyzed by five different distribution 

models (Table 5). 

Table 5. Values for the FR based on different types of distribution 

values of FFSI.  

Distribution of the 

map data 

Class of FSI 

Lo
w 

Moderat
e 

Hig
h 

Very 
high 

Extrem
e 

Equal intervals 
0.9

5 
3.29 0.00 0.00 0.00 

Geometric 

distribution 

0.4

0 
2.04 2.15 0.25 1.66 

Natural breaks 
0.3
2 

3.05 1.82 2.33 0.00 

Standard deviation 
0.2

9 
0.66 4.10 0.00 2.43 

Quantile 
0.2

6 
0.44 0.22 0.55 3.86 

According to the methodology used, an appropriate 

study area was prepared using the standard deviation of 

intervals (Figure 5), with FR values of 4.10 and 2.43 per 

the susceptibility classes of high and extreme risk types. As 

for this data distribution model, 8.00% of the indigenous 

territory area resides in the low, 77.71% in the moderate, 

9.36% in the high, 1.58% in the very high, and 3.35% in 

the extreme susceptibility regions. 

 
 

Discussion  

The vegetation of the vereda has high FR values 

probability because the environment of the region is 

associated with hydromorphic soils. Fire incidents in this 

region occurs during extreme drought periods, when the 

dry organic material in the environment can be promove 

fires to last for weeks with flame heights reaching 20 m 

(Maillard et al. 2009).  

It is a common practice to use fire in areas bordered by 

grasses for regenerating pastures, for example, Mistry et al. 

(2005), in study of the use of fire by the natives in 

indigenous territory Kraholândia, had concluded that the 

fire can be stimulated the regrowth of grasses. 

Nevertheless, research on traditional fire rescues in 

indigenous communities in Mato Grosso State revealed that 

the native population are totally opposed to burning in 

these areas. These perceptions are based on the effect in 

devastation on the farm land, that resulting in higher 

mortality of important trees to indigenous subsistence as 

sources of food, fiber, or wood, or damage to wildlife, as 

these environments serve as shelter to macaws, parrots, and 

several other animals (Falleiro 2011).  

The greatest FR value was find in agricultural areas, 

which confirms that the indigenous community applies fire 

to agro-pastoral activities and that this can trigger similar 

behavior in the forested areas. Furthermore, it is common 

to use fire stump farms; these are usually low-lying regions 

in topographical locations with higher soil moisture content 

and close to forest areas. The stone grassland areas are 

prominent in this environment, as this vegetation type 

typically occurs in mosaics in shallow soils, with individual 

trees developing between cracks highlighted in the rocky 

outcrops (Sano and Almeida 1998). 

The high FR value along the stone grassland class is 

strongly relate to the high fire frequency values in the areas 

with slopes higher than 30%. In this sense, the spatial 

analysis of the fire risk indicate that the slope factor was 
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prominent compared to the other factors analyzed (Lopes 

et al. 2009). In the uphill area, the fire tended to propagate 

faster and resembled a fire in the flat area under the 

influence of strong to medium winds (Ribeiro et al. 2008) 

and these characteristics influenced the frequency of fire 

occurrences in areas with higher than 30% slope.  

The hilliest regions are typically at higher altitudes 

such as indigenous territory Kraholândia (higher than 350 

m altitude); they had shown strongly influences the FR 

value. The winds are stronger at higher altitudes; this 

favors the drying of fuel loads and contributes to more 

intense fire propagation, as documented by Fule and 

Laughlin (2007) for temperate forests. Thus, in addition to 

the high frequency of fire occurrences in these 

environments, the contributions of other factors negatively 

influence the development of plants. 

In indigenous territory Kraholândia, the TWI was not 

associated with fire occurrence. However, the TPI 

presented values that reinforce the influence of altitude and 

steep areas, with reported FR values of 33.36 in the 

ridgeline areas. Surveys in Australia have indicated that 

topographical location, elevation, and slope orientation are 

important factors in the explanation of fire occurrences and 

that the probability of crown fire ridgelines in higher 

regions is greater than in ravines or valleys, which explains 

the high dispersion of fires in these environments (Wood et 

al. 2011). 

The slope aspect in the north, southwest, west, and 

northwest direction showed a mild correlation compared 

with fires in the study region, but the flat surfaces showed 

a greater correlation to the FR. The fire behavior associated 

with flat regions is related to the influence of solar energy 

on these areas throughout a typical day.  

The soil type indirectly influences the risk of fire 

because the soil characteristics define the type of human 

use and the associated vegetation. Plinthosols are form 

under restriction conditions for the water percolation, and 

it occupies areas of relief mostly flat or gently undulating 

and rarely wavy (Embrapa 2013). These characteristics are 

related to the presence of farmland in an area, corroborating 

the association of this type with the FR of fire occurrences.  

Yellow Oxisol consists of well drain soils and thick 

(Embrapa 2013) and this soil is commonly used for 

agricultural purposes because of the ease of machining and 

the advantage of a flat topography. Therefore, when these 

results are associated with the abovementioned conditions 

on the formation of strong relationships with the use of fire 

and agriculture, an interaction between these two factors is 

observed. 

Distances related to human settlement, hydrography, 

and roads are influential factors in the occurrence of 

managed fires and forest fires. The distances for roads and 

road density are important parameters for promoting public 

access to pastures and forests (Adab et al. 2013). Thus, our 

results showed that the distance to roads is a prominent 

variable for fire risk on indigenous land. The distance to 

watercourses also showed high favorability at 150–600 m 

and this may be related to the proximity of the veredas.  

With respect to the proximity of human settlements, 

only one class showed FR values higher than one, which 

indicates that the influence of other factors occasionally 

occurring in that zone (7,500–10,000 m), thus representing 

a relation with the factor of overcrowding. 

The FSI presented as standard deviations of variations 

established a scroll list of data across the middle, providing 

five different levels of susceptibility to wildfires. The high, 

moderate, and extreme susceptibility rates were observed 

for areas located to the north and southwest of the study 

area, despite being in small patches throughout the 

territory. The areas of low risk to susceptibility were 

accumulated in the central portion of indigenous territory 

Krahôlandia, which were the most distant and isolated 

human agglomerates. The areas with moderate content 

were distributed uniformly throughout indigenous territory 

Krahôlandia.  

 

Conclusions 

It was possible to identify the class factors most 

correlated with the occurrence of burning: stone grassland; 

other grasslands; areas with slopes higher than 30%; and areas 

at altitudes higher than 400 m (particularly when positioned 

on the ridgelines with slope orientations to the north, 

southwest, west, and northwest and in flat areas).  

In relation to the others factors, the most affected soil 

classes were Haplic Plinthosols and Yellow Oxisol, which are 

7.5–10.0 km away from overcrowded areas and therefore 

highly susceptible to fire, and regions at 150–600 m distance 

away from watercourses. The proximity to a road from a 

vulnerable area was directly proportional to fire occurrences 

and this correlation was confirmed in regions 600 m from a 

road. 

Finally, the form of distribution of the FSI data was as 

important as the values used in generating fire susceptibility 

maps because the standard deviation for the distribution 

values presented the highest correlation with firefighting 

events of the local brigade.  
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