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ABSTRACT: The use of herbicides is a usual practice in E. camaldulensis 

nurseries and plantations. The most widely used herbicide is glyphosate, whose 

drift damages this plant leaves. Although the mechanism of action of glyphosate is 

well known, it is not clear which alterations lead to the death of plants. The aim of 

this work was to assess the physiological and anatomical responses of leaves of E. 

camaldulensis seedlings to glyphosate application. Tests were performed on one-

year-old seedlings sprayed with 0, 65 and 130 g a.e. ha-1 glyphosate. Ten days after 

the application, we measured gas exchange and fluorescence emission of 

chlorophyll a. We also quantify the concentrations of chlorophyll a, shikimate, 

carbohydrates, K+ and Mg2+, and the anatomical parameters of epidermis and 

mesophyll. Data was contrasted using Fisher’s test (p<0.05). We concluded that 

glyphosate alters the physiology of E. camaldulensis, inhibiting photosynthesis, 

changing the metabolism of carbohydrates and the ionic homeostasis. Tissue 

disorganization, heavily marked at the level of mesophyll, indicates definite 

alterations. 

 

 

 

Respostas fisiológicas e anatômicas de folhas de 

Eucalyptus camaldulensis à aplicação de glifosato 
 

 

 

RESUMO: O uso de herbicidas é uma prática usual em viveiros e plantações de 

E. camaldulensis. O herbicida mais utilizado é o glifosato cuja deriva danifica as 

folhas destas plantas. Embora o mecanismo de ação do glifosato seja bem 

conhecido, não está claro quais alterações levam à morte das plantas. O bjetivo 

deste trabalho foi avaliar as respostas fisiológicas e anatômicas de folhas de 

mudas de E. camaldulensis à aplicação de glifosato. Os experimentos foram 

realizados em mudas de um ano de idade pulverizadas com 0, 65 e 130 g e.a. ha-1 

de glifosato. Dez dias após a aplicação, foram medidas as trocas gasosas e a 

emissão de fluorescência da clorofila a. Também foram quantificadas as 

concentrações de clorofila a, chiquimato, carboidratos, K+ e Mg2+, e os 

parâmetros anatômicos da epiderme e do mesofilo. Os dados foram contrastados 

usando o teste de Fisher (p <0,05). Em conclusão o glifosato altera a fisiologia 

de E. camaldulensis, inibindo a fotossíntese, mudando o metabolismo dos 

carboidratos e a homeostase iônica. A desorganização do tecido, fortemente 

marcada ao nível do mesofilo, indica alterações definidas. 

Original Article 

 

*Corresponding author: 

diealt2020@gmail.com

  

Keywords: 

Ecophysiology 

Pesticides 

Plant anatomy 

 

Palavras-chave: 

Ecofisiologia 

Agrotóxicos 

Anatomia vegetal 

 

Received in 

2021/05/28 
 

Accepted on 

2021/09/21 

 

Published in  

2021/10/11 

 

 

 
 

 

 
 

 

 

DOI: 

https://doi.org/10.34062/afs.

v8i3.12483 

 

 

 

 

 

 

 

https://orcid.org/0000-0001-9869-3455
https://orcid.org/0000-0002-0246-9481
https://orcid.org/0000-0003-3446-9379
https://orcid.org/0000-0001-8928-9733
https://orcid.org/0000-0002-0348-2047
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Meloni et al. 

 

Adv. For. Sci, Cuiabá, v. 8, n. 3, p. 1535-1543, 2021                                                           1536 

Introduction 
Weed management is one of the most 

relevant forestry practices in eucalyptus nurseries 

and plantations. It is performed with mechanical or 

chemical methods, or the combination of both 

(Cerveira Junior et al. 2020). 

The recurrent use of herbicides in forest 

plantation management can be harmful for the crop 

itself (De Carvalho et al. 2018). Some studies have 

demonstrated that the contact of herbicides with the 

leaves of forest species might cause considerable 

losses in timber production because of growth 

decline and plant death (Minogue and Osiecka 

2015; Santos et al. 2015). The magnitude of the 

damage is proportional to the dose recommended 

for weed control (Batista et al. 2018). 

Glyphosate (N-phosphonomethyl glycine) is 

among the most widely used herbicides (Gomes et 

al. 2019) because it controls a broad spectrum of 

weeds. It is systemic, nonresidual, and nonselective. 

It is easily transported from the leaves to the 

meristematic tissues and acts inhibiting the 5-

enolpyruvyl-shikimate-3-phosphate synthase 

(EPSPS), responsible for the synthesis of 

chorismate, an intermediary in the shikimic acid 

pathway leading to the synthesis of aromatic amino 

acids (Cruz et al. 2021). 

Although the mode of action of glyphosate 

is well known, the metabolic and anatomical 

changes consistent with plant death after treatment 

with the herbicide are not clear. Herbicides might 

decrease the photosynthetic rate (Khan et al. 2020) 

and alter the metabolism of carbohydrates (Orcaray 

et al. 2012). The analysis of chlorophyll a 

fluorescence constitutes a sensitive and 

nondestructive method for the assessment of the 

changes produced in the photochemical stage of 

photosynthesis. It has been recently used to 

evaluate the degree of damage of the photosynthetic 

apparatus under different conditions of 

environmental stress such as extreme temperatures 

(Van der Westhuizen et al. 2020), drought (Badr 

and Brüggemann 2020), salinity (Meloni et al. 

2017), and herbicides (Souza et al. 2014). 

Glyphosate might alter the mineral 

composition of plants, although the reported results 

are contradictory (Gomes et al. 2014). In vegetable 

tissues, the phosphonate and carboxyl groups of the 

glyphosate molecule can link to divalent cations, 

immobilizing them (Zobiole et al. 2011). There are 

no studies on the effect of herbicides on the mineral 

composition of eucalyptus.  

The impact of the application of herbicides 

may be observed in the internal anatomy and the 

epidermis of leaves. However, there are only a few 

studies on the description of the microscopic 

damage in leaves (Freitas-Silva et al. 2020). The 

use of physiological and anatomical variables 

constitutes a tool to assess the damage of herbicides 

on woody species (Lima et al. 2017). 

The aim of this work is to evaluate the 

physiological and anatomical responses to 

glyphosate application on leaves of E. 

camaldulensis seedlings. 

 

Material and Methods 

Vegetal material 

 Essays were performed on one-year-old 

Eucalyptus camaldulensis seedlings grown in 

plastic pots containing loam soil fertilized with N-

P-K (20:5:20). The pots were placed in a 

greenhouse and received daily manual irrigation to 

ensure adequate water availability. 

Plants were sprayed with Roundup® Full II 

(Monsanto Argentina), containing 65% (w/w) 

glyphosate potassium salt (N-phosphonomethyl 

glycine) as active element at concentrations of 

either 0, 65 or 130 g a.e. ha-1. Ten days after the 

herbicide application, measurements of both 

fluorescence emission and gas exchange were 

performed, and samples were collected to conduct 

chemical determinations. 

During the light and dark periods, the 

average values of air temperature were 25ºC and 

15ºC, respectively. The daily average value of solar 

irradiance was 1,500 μmol m-2s-1. 

 

Photosynthesis and chlorophyll a concentration 

 Gas exchange measurements were 

performed at 8:00 a.m. on the first three fully-

developed leaves from the apex. An infrared gas 

analyzer (IRGA-LCpro+ System ADC, 

BioScientific Ltd.)  was used in a closed system at a 

CO2 concentration of 380 ppm and 26o C. An 

artificial light source was applied, with a light 

intensity of approximately 1500 μmol m-2 s-1 

(Portela et al. 2019). Carbon photosynthetic 

assimilation (A), stomatal conductance (gs), 

intercellular CO2 concentration (Ci), and 

carboxylation efficiency (A/Ci) were determined. 

Chlorophyll a concentration was quantified 

on the fourth fully-developed leaf from the apex. 

Leaf samples (0.2 g) were ground in a mortar with 

80 % acetone (v/v); the extract was filtered through 

glass wool and centrifuged at 15,000 x g for five 

minutes. The supernatant was collected, and the 

absorbances were measured at 663, 647, and 470 

nm. The concentration of chlorophyll a was 

calculated according to the Lichtenthaler and 

Welburn equations (1983). 

 

Chorophyll a fluorescence 

 Chorophyll a fluorescence emission kinetics 

was measured on the same leaves used for the 

photosynthesis measurements with a Handy PEA 

portable fluorimeter (Plant Efficiency Analyzer, 

Hansatech Instruments Ltd, King’s Lynn Norfolk, 

UK). Measurements were performed at 8:00 a.m., 
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after the acclimatization of the leaves in darkness 

for 30 minutes. Fluorescence emission on leaves 

was induced by red light (650 nm), with an 

intensity of 3,000 μmol photons m-2 s-1 from a 

matrix containing three diodes focused on a 4 mm 

diameter point and registered for one second. The 

OJIP fluorescence transients obtained for each 

treatment were analyzed according to JIP test, and 

the index of total performance (PITotal) was 

calculated according to Gama et al. (2013) using 

the Biolizer software (Bioenergetics Laboratory, 

University of Geneva, Switzerland).  

Concentrations of shikimate, carbohydrates, and 

ions 

 Shikimate was extracted and quantified 

according to the Singh and Shaner technique 

(1998). One hundred milligrams of leaves were 

homogenized in 30 ml HCl 0.25 N. The extract was 

centrifuged at 25,000 g for 15 m. A 40 µl aliquot of 

the supernatant was collected to add 0.5 ml of 

periodic acid 1 %. After 3 h, 0.5 ml NaOH 1 N and 

0.3 ml glycine 0.1 % were incorporated. The 

solution was vigorously mixed, and the absorbance 

was measured at 380 nm in a spectrophotometer.  

Soluble carbohydrates and starch were 

quantified following the method described by 

Portela et al. (2019). 

For the analysis of ions, leaves were dried in 

a forced ventilation oven at 70° C for 48 h. Then, 

they were ground in Wiley-type mill grinder, and 

the material was digested in a mixture of 

HNO3/HClO4. The resulting solutions were diluted 

in deionized water to determine K+ concentration 

with a flame photometer (Corning, Model 400, 

USA) and Mg2+concentration by atomic absorption 

spectrometry  (GBC, Model 908 AA, USA), 

following the protocol described by Al-Kahayri 

(2002). 

Anatomy of leaves 

 Mature and fully developed leaves located 

from the fourth node to the apex were collected to 

make a homogeneous set for each treatment and a 

control sample; they were preserved in Carnoy’s 

solution until the moment of processing the 

material. Blades were extracted from the set of 

leaves to perform observations and quantifications 

of the epidermis and anatomy. For the extraction of 

epidermis, we performed mesophyll digestion with 

50 % sodium hypochlorite, a repeated washing with 

distilled water, an immersion in 5 % chloral hydrate 

for 5 m, and the mounting on slides using gelatin-

glycerin glue. To obtain the transverse sections of 

the leaves, mesophyll was dehydrated with ethyl 

series and embedded in paraffin. Cross-sections 

with 10 μm thick, obtained using a rotary 

microtome, were stained with safranin - fast green, 

and mounted in Canada balsam (Dizeo, 2000). 

Microscopic observations were performed using a 

stereo-microscope and anatomical attributes were 

measured using a Motic BA 210 image processor. 

In lower epidermis we observed stomatal density, 

and in the transverse section of leaves, we 

determined the palisade parenchyma, spongy 

parenchyma, and total mesophyll thickness.  

Statistical analysis and experimental design 

 An experimental design completely at 

random with ten repetitions was used, and the 

results were analyzed with ANOVA and Fisher’s 

test (Fisher p<0.05).  

 

Results and discussion 

Glyphosate produced a sharp reduction in 

the photosynthetic rate (Figure 1A). The 65 g a.e. 

ha-1 and 130 g a.e. ha-1 doses decreased in 33 % and 

71 % the net photosynthesis when compared with 

the control, respectively. Stomatal conductance had 

a similar behavior (Figure 1B), with reductions of 

33 y 67 % in both doses with respect to the control, 

respectively. The inhibition of CO2 assimilation 

after applying glyphosate has been observed in 

other species, but the inhibition mechanism remains 

unknown (Gomes et al. 2014). The decrease in the 

net photosynthesis was partly caused by the 

stomatal closure because both gas exchange 

variables had the same response to the glyphosate 

application. However, in the 65 g ha-1 glyphosate 

dose the intercellular CO2 concentration did not 

vary with respect to the control (Figure 1C), 

indicating that CO2 did not limit photosynthesis in 

that dose. In agreement with that result, both doses 

of the herbicide produced a decrease in 

carboxylation efficiency (Figure 1D), and thus a 

nonstomatal inhibition of photosynthesis. 

Glyphosate may decrease carboxylation efficiency 

by decreasing the levels of ribulose-1,5-

biphosphate, and 3-phosphoglyceric acid (Siehl 

1997). In Lupinus albus, glyphosate produced 

inhibition of 26% in the Rubisco activity (De María 

et al. 2006). 

Both doses of glyphosate reduced the 

chlorophyll a concentration (Figure 1E). This 

response was observed in other species and was 

associated to pigment degradation or synthesis 

inhibition (Huang et al. 2012). The accumulation of 

reactive oxygen species might be responsible for 

the degradation of photosynthetic pigments 

(Radwan and Fayez 2016). Synthesis inhibition in 

chlorophyll a might be caused by low glycine and 

glutamate concentrations, necessary for the 

synthesis of δ-aminolevulinic acid, a precursor of 

this photosynthetic pigment (Serra et al. 2013).  
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Figure 1. Carbon photosynthetic assimilation (A), stomatal conductance (B), intercellular CO2 concentration (C), 

carboxylation efficiency (D), chlorophyll a concentration (E) and index of total performance (F) in E. 

camaldulensis plants submitted to 0, 65 and 130 g a.e ha-1 glyphosate. Vertical bars represent the mean standard 

deviation. Different letters denote significant differences at level P <0.05 according to Fisher’s test. 

 

 

As a consequence of the impact of the 

herbicide on the photosynthetic electron transport 

chain, an important decrease in the total 

performance index (PITotal) was observed (Figure 

1F). PITotal is a fluorescence parameter highly 

sensitive to environmental stresses that indicates the 

vitality of the photosynthetic apparatus (Amin et al. 

2016). Both doses of glyphosate produced an 

important decrease in PITotal, which indicates an 

inhibition in the photochemical stage of 

photosynthesis. This result was partly caused by the 

decrease in the content of Chlorophyll a. Gomes et 

al. (2017) also reported an inhibition in the 

photochemical stage of photosynthesis in Salix 

miyabeana sprayed with glyphosate because of a 

decrease in the concentration of photosynthetic 

pigments and plastoquinone. In Glycine max, 

glyphosate inhibited the photochemical stage of 

photosynthesis by decreasing the abundance of the 

D1 and D2 proteins associated to photosystem II 

(Vivancos et al. 2011). The decrease in PITotal 

indicates a lower provision of ATP and NADPH for 

the Calvin cycle (Gama et al. 2013) that coincides 

with the lowest efficiency in carboxylation 

calculated from the gas exchange variables. 

The obtained results differ from the ones 

observed in Phaseolus vulgaris, in which 

glyphosate produced an inhibition of 

photosynthesis because of the stomatal closure 

whereas the photochemical stage was not altered 
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(Olesen and Cedergreen 2010). These authors 

questioned the use of fluorescence variables as 

markers of stress by herbicides and suggested the 

use of gas exchange variables. 

Shikimate concentration on leaves was very 

sensitive to glyphosate. In plants treated with both 

65 and 130 g a.e. ha-1 glyphosate, shikimate 

concentrations were 21 and 32 times higher than in 

the control, respectively (Figure 2A). Glucose and 

sucrose concentrations also increased in both doses 

of the herbicide, whereas starch concentration 

remained constant (Figures 2B, C, and D). 

 

 

Figure 2. Shikimate (A), glucose (B), sucrose (C), starch (D), potassium (E), and magnesium concentrations (F) 

in E. camaldulensis plants submitted to 0, 65 and 130 g a.e ha-1 glyphosate. Vertical bars represent the mean 

standard deviation. Different letters denote significant differences at level P <0.05 according to Fisher’s test. 

 

Glyphosate produced a sharp increase in 

shikimate foliar concentration because of the 

inhibition of the EPSPS enzyme, representing a 

measurement of the susceptibility of one species to 

glyphosate. Thus, a species with low levels of 

shikimate might tolerate a higher dose of 

glyphosate (Palma et al. 2019). The high 

concentration of shikimate indicated the great 

susceptibility of E. camaldulensis to glyphosate, 

accompanied by an increase in the glucose and 

sucrose concentrations in leaves. Because 

glyphosate inhibited mainly the growing of tissues 

in active growing, it might produce a decrease in 

the demand of photoassimilates and thus an 

accumulation of carbohydrates in leaves. 

Yanniccari et al. (2012) suggested that the stomatal 

closure and the inhibition in CO2 fixation observed 

after the application of glyphosate might be due to 

the accumulation of the final products of 

photosynthesis. 
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Glyphosate affected the mineral composition 

of leaves. In plants treated with both 65 and 130 g 

a.e. ha-1 glyphosate, K+ concentration was reduced 

in 17 and 37 % with respect to the control, 

respectively (Figure 2E). A similar trend was 

observed in Mg2+ concentration (Figure 2F). The 

effect of glyphosate on mineral nutrition has not 

been deeply studied, and there are contradictory 

results (Gomes et al. 2014). Glyphosate did not 

produce any changes in the mineral composition of 

glyphosate-resistant soybean cultivars (Zobiole et 

al. 2011). However, in glyphosate- sensitive 

soybean cultivars the absorption of macronutrients 

decreased, producing mineral deficiencies (Cakmak 

et al. 2009). Zobiole et al. (2012) also reported a 

significant decrease in the concentrations of micro- 

and macronutrients in soybean leaves treated with 

glyphosate. These plants had lower absorption and 

translocation of K+ and Mg2+. The mineral 

deficiencies produced by glyphosate have also been 

related with the inhibition in root growing (Zobiole 

et al. 2012). The decrease in Mg2+ and K+ 

concentrations might also be related with the 

reduction in chlorophyll concentrations and in the 

stomatal conductance observed in these trials. In 

effect, Mg2+ participates in the synthesis of the 

porphyrin ring of chlorophylls whereas K+ regulates 

the stomatal openings and closures (Gomes et al. 

2014). 

The exposition to glyphosate produced a 

decrease in stomatal density, as the dose increased 

(Figure 3A), which agrees with observations 

presented by Lima et al. (2017) in plants of 

Bahuinia variegata using diuron. 

 

 

 

Figure 3. Stomatal density (A), Palisade parenchyma (B), spongy parenchyma (C) and mesophyll thickness (D) 

in E. camaldulensis plants submitted to 0, 65 and 130 g a.e ha-1 glyphosate. Vertical bars represent the mean 

standard deviation. Different letters denote significant differences at level P <0.05 according to Fisher’s test. 

 

The thickness of palisade parenchyma, 

spongy parenchyma and mesophyll, increased 

significantly as the dose of glyphosate increased 

(Figures 3B, C and D), in agreement with what was 

indicated by Tuffi Santos et al. (2008), because of 

the plasmolysis of some tissues and the hyperplasia 

manifested essentially in the parenchyma. 

According to Tuffi Santos et al. (2009), the 

anatomical responses to the simulation of 

glyphosate drifting in the foliar anatomy are 

associated with the response of the plant as self-

protection. 

The stomatal inhibition of photosynthesis 

could have been caused by not only stomatal 

closure but also by the manifested decrease of 

stomatal density. The increase of soluble sugars is 

in accordance with the significant increase of the 

spongy parenchyma thickness. 
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Conclusions 

Glyphosate alters the physiology of E. 

camaldulensis, inhibiting photosynthesis, changing 

the metabolism of carbohydrates and the ionic 

homeostasis. Tissue disorganization, heavily 

marked at the level of mesophyll, indicates definite 

alterations. 
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