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ABSTRACT: Forest restoration is an urgent demand in the national and global 

scenario, especially in the Amazon due to the advance of forest cover loss. On the 

other hand, the nutritional limitation of soils in this biome is a challenge for this 

practice, considering the entire impact of stress on plants. Considering it, this review 

sought to compile the findings on the impacts of nutritional stress on tree species, as 

well as the strategies used to reverse this impasse in the Amazon. As a result, it was 

possible to observe biochemical, physiological, and morphological responses in tree 

species. In general, we found that nutritional stress results in changes in the 

biochemical and physiological activities of the plant since most nutrients are related 

to the function, structure, and/or composition of cellular elements. For 

morphological characteristics, a decrease in height, biomass and leaf area are the 

most recurrent damages. Regarding restoration methods used to minimize 

nutritional stress, besides conventional techniques such as phosphate fertilization 

and liming, it was observed the scientific community has invested in strategies 

mainly based on the reuse of waste. Furthermore, the application of biostimulants, 

biochar, and biofortification is increasingly common and promising. In this context, 

the promotion of research in the Amazon biome is strongly recommended to reduce 

existing gaps. 

 

Como o estresse nutricional do solo limita a 

restauração na Amazônia?  

Respostas fisiológicas, bioquímicas e anatômicas de 

espécies arbóreas 
 

RESUMO: A restauração florestal é uma demanda urgente no cenário nacional e 

global, especialmente na Amazônia devido ao avanço da perda de cobertura 

florestal. Por outro lado, a limitação nutricional dos solos do bioma é um gargalo 

para esta prática, tendo em vista uma série de impactos causados pelo estresse às 

plantas. Diante disso, está revisão buscou compilar os achados sobre os impactos do 

estresse nutricional para espécies arbóreas, bem como as estratégias utilizadas para 

reverter este impasse na Amazônia. Por meio da revisão, foi possível observar 

respostas bioquímicas, fisiológicas e morfológicas em espécies arbóreas. De 

maneira geral, constatou-se que o estrese nutricional resulta nas alterações de 

atividades bioquímicas e fisiológicas do vegetal, já que a maioria dos nutrientes 

constituem funções relacionadas à função, estrutura e/ou composição de elementos 

celulares. Para as características morfológicas, decréscimo em altura, biomassa e 

área foliar são os prejuízos mais recorrentes. Em relação aos métodos de restauração 

utilizados para minimizar o estresse nutricional, além de técnicas convencionais 

como a adubação fosfatada e a calagem, observou-se que a comunidade científica 

tem investido em estratégias orgânicas, baseadas principalmente no 

reaproveitamento de resíduos. Ademais, o uso de bioestimulantes, do biochar e da 

biofortificação são cada vez mais usuais e promissores. Nesse contexto, recomenda-

se incisivamente o fomento de pesquisas no bioma, visando diminuir as lacunas 

existentes. 
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Introduction 

Biotic or abiotic conditions that affect the 

development of the plant are known as stress (Kaur 

and Gautam 2021). Examples of biotic conditions 

that limit plant growth include competition, pest 

attacks, and insectivorous action (Mertens et al. 

2021), while light intensity, soil pH, and temperature 

exemplify the abiotic conditions (Nowicka et al. 

2018). Although both have a large influence on plant 

growth, abiotic conditions are the main factors 

limiting plant growth, and generally facilitate 

pathogen activity (Kaur and Gautam 2021). 

In Amazon, for instance, high soil acidity 

reduces the availability of essential elements, and 

makes the forest dependent on the nutrient cycle 

(Machado et al. 2016) to perform physiological and 

biochemical activities essential to the plant cycle 

(Hoosbeek et al. 2023). The impacts are intensified 

with the advance of deforestation caused by 

activities such as agriculture, mining, livestock, and 

logging, which although they contribute 

significantly to the Brazilian Gross Domestic 

Product (GDP) (Sauer 2018, Patharkar and Walker 

2019), cause the interruption of biogeochemical 

cycles and the reduction of the carbon sink (Carvalho 

et al. 2019, Silva, Bento, et al. 2020). 

In order to decrease and mitigate the negative 

environmental impacts of these activities, especially 

in the Brazilian portion of the ecosystem that 

corresponds to more than 60% of the territory, global 

goals and agreements were established (Muthee et al. 

2022). In the Bonn challenge, Brazil committed to 

restoring 12 million hectares by the year 2030 

(Suding et al. 2015, Guerra et al. 2020). To do so, 

investments in research and restoration technology 

have become indispensable, even if the edaphic 

conditions of the Amazon are an obstacle to this 

practice (Ribeiro et al. 2021). For these locations, the 

use of structural indicators such as DBH, height, and 

increment rates stands out due to the low cost and 

facility of data collection (Williams-Linera et al. 

2021). 

Generally, due to prolonged stress, the high 

mortality of species is evidenced (Elias et al. 2019) 

that is characterized as feedback from the plant, 

needing a better comprehension of the biochemical 

and physiological responses that lead to 

morphological consequences. However, one of the 

main obstacles is the accumulation of research 

focused on forest cultures (Chandrasekaran; 

Boopathi; Manivannan, 2021; El-Esawi Et Al., 

2018; Ohanmu; Ikhajiagbe; Edegbai, 2018). Thus, 

aiming at advancing forest restoration in the 

Amazon, this review searched to gather findings on 

the impacts of nutritional stress on tree species, as 

well as the strategies used to reverse this impasse in 

the Amazon. 

 

 

 

Factors that intensify nutritional stress 

Soil-plant interaction is fundamental to the 

regulation of biogeochemical processes and 

therefore to the supply of ecosystem goods and 

services (Elias et al. 2019). In fact, in all soil phases 

(solid, liquid and gas) there are interactions with the 

mineral components. However, abiotic factors such 

as light and water availability, and temperature may 

interfere with the availability of nutrients in the 

system (Nowicka et al. 2018). Light availability 

regulates the photosynthetic processes of the plant, 

which are responsible for the production of ATP and 

NADPH (Shafiq et al. 2021). On the other hand, 

temperature intensifies the degradation of the litter 

layer, which is the main route of nutrient entry into 

the soil-plant system (Bufacchi et al. 2020), besides 

having a strong correlation with the denaturation of 

proteins and lipids (Estravis-Barcala et al. 2020).  

In addition to these factors, soil pH plays an 

important role in nutrient availability, in establishing 

soil microorganisms, and therefore in plant 

development (Rocha et al. 2023). In the case of 

essential nutrients, the appropriate pH to optimize 

nutrient availability ranges from 4.5 to 6.5, so any 

variation above or below these values implies lower 

nutritional availability for the soil-plant system (Taiz 

et al. 2017). For example, a pH greater than 6.5 

reduces the availability of phosphorus, magnesium, 

manganese, iron, boron and zinc, whereas a pH 

lower than 4.5 reduces the availability of nitrogen 

and calcium (Rocha et al. 2023). 

The implications for plant development may 

be justified by Liebig's law of the minimum, which 

explains the nutritional limitations of Amazon soils, 

most of which are classified as acids. In the tropics, 

due to intense leaching, stress is usually caused by 

nutritional scarcity or low availability (Zhou et al. 

2018), while in temperate regions excess is the main 

reason (Wheeler et al. 2017). The responses can be 

seen in both functional (biochemistry and 

physiology) and structural (anatomy) aspects of the 

plant (Luo et al. 2019). Added to that, pH also 

influences the action of microorganisms, because for 

the establishment of the microbial community, it is 

more effective at pH greater than 5.5 (Reyes et al. 

2019, Jones et al. 2019). 

 

Impacts of nutritional stress on tree growth 

Biochemical and physiological responses 

 

Nitrogen (N), absorbed by plants in the forms 

of ammonium (NH4+) and nitrate (NO3), is one of 

the main drivers and/or limiters of plant growth, 

depending on its availability, as it is a key constituent 

of cellular elements (Fig. 1), such as proteins, 

nucleic acids, and hormones (Xie et al. 2022). Thus, 

the absence or insufficiency of available N in the soil 

delays the biochemical processes vital to the 

development, especially the transport of solutes, 
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consequently inhibiting plant growth (Luo et al. 

2019). Nitrogen deficiency in the forest is also 

capable of reducing 41% of photosynthetic capacity 

and increasing starch production in the root, thereby 

increasing root biomass (Luo et al. 2019, Jaquetti et 

al. 2022).  

 

 

Figure 1. Nitrogen as a key element of plant hormones (A = auxin; B = Cytokinin); amino acids (C); and protein 

(D). Source: Adapted from Taiz et al. (2017) and Gray (2004). 

Considering the role of phosphorus (P) in 

reactions involving NADPH and ATP (Fig. 2A), 

limiting this element mainly affects the synthesis of 

sugars and the fixation of carbon. Consequently, 

damage to the structural integrity of the cell is also 

easily visualized (Meng et al. 2021), as it is directly 

related to the enzymes involved in photosynthesis, 

such as ribulose 1,5-bisphosphate carboxylase 

(RuBisCo). 

The omission of potassium (K) delays the 

activation of numerous enzymes involved in energy 

metabolism, such as energy production and osmotic 

control of cells (Cornut et al. 2021). The stomatal 

control provided by this nutrient is directly related to 

transpiration, since it acts in the activation of 

ATPase (Mostofa et al. 2022). In addition to that, the 

low availability of K reduces the use of 

photoassimilates, consequently reducing CO2 

fixation and increasing ionic availability. The 

application of K in plants under salinity stress was 

responsible for a 65% increase in root length and a 

reduction in sodium in fine and medium roots (Larbi 

et al. 2020), probably due to the action of ethylene 

(Zhang et al. 2021), besides providing greater 

resistance to rust in Eucaliptus grandis (Masullo et 

al. 2020). 

 Calcium (Ca) is an important element for 

the formation of plant tissues and acts as a structural 

component of plant cells, especially pectin (Fig. 2B). 

Under stress conditions, the nutrient is characterized 

as an efficient plant defense signal, since proteins 

linked to calcium are responsible for the signal 

transduction mechanism (Verma et al. 2022). 

Furthermore, Ca plays a key role in mitigating 

abiotic stresses caused by salinity, water deficit, 

temperature and heavy metals, as it activates the 

defense system of plants, increasing the production 

of antioxidants and osmoprotectors (Shabbir et al. 

2022).  

 
Figure 2. Function of phosphorus as a component of 

the ATP molecule (A), and of calcium ions 

connecting carboxyl groups and assisting in the 

structure of the pectin network (B). Source: Adapted 

from Furian (2022) and Taiz et al. (2017). 
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Magnesium (Mg) is one of the most important 

elements for the activation of these proteins (Mao et al. 

2022), especially those involved in photosynthetic 

processes. That is because Mg is the central atom of 

the chlorophyll molecule (Fig. 3), consequently its 

deficiency is directly related to the decrease in 

photosynthetic rates (Cakmak and Kirkby 2008). 

However, excess Mg may inhibit the transport of K of 

cytosol (Guan et al. 2020), a study conducted with 

Hevea brasiliensis seedlings found a reduction in 

chlorophyll content and approximately 20% reduction 

in chloroplast length (Xue et al. 2019). 

 

Figure 3. Structural function of magnesium as the 

central atom of the chlorophyll molecule. Source: 

Karcz et al. (2014). 

 

Regarding micronutrients, the absence of iron 

(Fe) interferes with metabolic processes, hormonal 

regulation, and enzymatic reactions (Krohling et al. 

2016). The deficiency of this nutrient leads to a 

synthesis of Abscisic Acid in the roots to regulate the 

distribution of Fe and reduce the impacts of stress 

(Zhang et al. 2020). Additionally, iron deficiency 

increases the enzymatic activity of ferric reductase, 

which is responsible for the reduction of iron in the 

roots (Jin et al. 2011). The impacts under this condition 

are also related to the inhibition of other macros (K, 

Ca, Mg and P) and micronutrients (Mn, Cu, Mo and 

Zn) (Lima et al. 2018). In the case of cobalt (Co), 

deficiency directly interferes with nitrogen fixation, 

since the component is part of cobalamin, a vitamin 

used in bacterial fixation enzymes (Akeel and Jahan 

2020).  

Heavy metals also result in physiological 

damage to the plant. In mulberry seedlings (Morus 

alba L.), for instance, the stress caused by lead (Pb) 

and cadmium (Cd) intensified the formation of 

reactive oxygen species (ROS), and consequently, 

caused the degradation of chlorophyll (Huihui et al. 

2020). For other forest species native to Brazil, the 

increase in inc (Zn) concentration led to lipid 

peroxidation due to ROS (Souza et al. 2020).  

Anatomical and morphological responses 

Biochemical and physiological impacts result 

in anatomical (or morphological) reactions in plants. 

Decreases in height, biomass, and leaf area are 

characteristics of boron deficiency (Fig. 4A), while the 

toxicity caused by the excess of the nutrient causes 

scorching of leaves, but without significant impacts on 

the roots due to the lower concentration of the nutrient 

in this region (García-Sánchez et al. 2020). On the 

other hand, phosphorus deficiency in Citrus species 

showed an increase in the ratio between the root and 

the shoot due to the decrease in the leaf and stem area 

(Fig. 4B), which can be explained by the reduction in 

the chlorophyll content (Meng et al. 2021). 

Additionally, soils with high aluminum concentrations 

can result in P stress, as aluminum reduced phosphorus 

concentrations in the root, stem, and leaves of Citrus 

grandis (L.) Osbeck (pomelo) (Jiang et al. 2009).  

For clones of Prunus persica Batsch (peach 

tree), symptoms of chlorosis, senescence, and necrosis 

(Fig. 4C) were observed as a response to calcium 

deficiency. Moreover, this element acts to mitigate the 

effects caused by the phosphorus deficiency in 

Chinese spruce trees (Cunninghamia lanceolata 

(Lamb.) Hook.) (Rashid et al. 2020). Under conditions 

of soil nitrogen limitation, forest species are more 

sensitive to drought due to reduced root biomass (Song 

et al. 2019). The exposure time to N showed a positive 

correlation with the degree of injury in Carpinus 

putoensis W.C.Cheng (Putuo hornbeam) leaves (Fig. 

4D), where after 72 hours the impacts were irreversible 

and resulted in the death of the leaf (Sheng et al. 2021). 

On the other hand, excess copper (Cu) is 

associated with increased susceptibility to attack from 

pathogens such as rust. The omission of this nutrient 

in fertilization accounted for 30% of the reduction in 

Eucaliptus leaf width (Masullo et al. 2020). In a study 

carried out with the Salix babylonica tree (Weeping 

willow) in China, dosages from 100 μM resulted in 

morphological alterations, with a reduction in the total 

height and number of leaves (Fig. 4E). With the 

application of 200 μM of Cu, there was a decrease in 

length and quantity of roots, and at dosages of 200 to 

400 μM the plants gradually died (Wang et al. 2020).  

In Hevea brasiliensis (rubber tree) seedlings, 

the omission of potassium and magnesium in the 

fertilization caused a reduction of approximately 

12% and 16% in the total height and diameter of the 

stem of the plants, respectively (Fig. 4F) (Xue et al. 

2019). The root biomass can also be reduced, that is 

because the reduction in the content of both nutrients 

increases the concentration of sugar (sucrose and 

starch) in leaves, as consequence of the reduction in 

transport of sucrose (Xue et al. 2019).
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Figure 4. Morphological responses in leaves and/or roots of tree species subjected to nutritional stress. A = 

Neolamarckia cadamba (Roxb.) Bosser seedlings that did not receive boron dosages, on the left, and those that 

received 20 µM of boron, on the right (Yin et al. 2022).  B = Effects of phosphorus deficiency on Citrus grandis 

(L.) Osbeck seedlings (Meng et al. 2021). C = Calcium deficiency on Prunus persica Batsch leaves (Aras et al. 

2021). D = Effects of exposure time to NO2 ion Carpinus putoensis Cheng (Sheng et al. 2021). E = Responses of 

the application of 100 μM of cobalt in comparison with the non-application on Salix babylonica seedlings (Wang 

et al. 2020). F = Fertilization with the joint absence of K and Mg (-K-Mg), absence of K only (-K), absence of Mg 

only (-Mg) and control treatment in Hevea brasiliensis seedlings (Xue et al. 2019). Source: Adapted from Yin et 

al. (2022); Meng et al. (2021); Aras; Keles; Bozkurt (2021); Sheng et al. (2021); Wang et al. (2020b) and Xue et 

al (2019). 

 

Visually, interveinal chlorosis is one of the 

characteristics of iron (Fe) deficiency which can be 

minimized by ABA production (Fig. 5). In an 

experiment conducted under controlled conditions, 

the application of abscisic acid helped in the increase 

of the root system, and the results indicated a gradual 

reduction of the action of this hormone in 7 days, 

allowing to infer the consumption of ABA by the 

roots in the circumstance of Fe deficiency (Zhang et 

al. 2020).  
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Figure 5. Influence of Abscisic Acid (ABA) and iron deficiency (Fe) in two-month-old Malus hupenensis seedlings 

for phenotypes (A), appearance of leaves from bottom to top (B), activity of ferric reductase enzyme (C ) and root 

development (D). Intense purple represents high Fe2+ concentrations. Where the treatments are: -Fe = iron 

deficiency; +Fe = Addition of 50 μM Fe; -Fe + ABA = without addition of iron, and addition of 5 μM de ABA; + 

Fe + ABA = addition ofb50 μM Fe and 5 μM of ABA. Source: Adapted from Zhang et al. (2020). 

 

 

Strategies used in forest restoration practices in 

the Amazon to minimize nutritional stress 

In order to mitigate the impacts of nutritional 

limitations and enhance the results of restoration 

methods, strategies have been adopted by numerous 

researchers in the Amazon biome (Dias et al. 2012, 

Thomas and Gale 2015, Barbosa et al. 2022) (Fig. 

6A). Among them, revegetation with seedling 

planting of native species is the most used one (Fig. 

6B), being advantageous due to the possibility of 

choosing species suitable for the conditions of the 

ecosystem (Martins et al. 2022). In the Amazon, the 

specie Mimosa acutistipula var. ferrea Barneby 

(Mimosa of canga) is highly recommended for 

revegetation of areas with ferruginous outcrops, as it 

favors symbiotic associations with nitrogen-fixing 

bacteria (Costa et al. 2021).  

Trees of the genus Cecropia and Inga, 

naturally regenerated in altered areas in the Amazon 

(Rezende and Vieira 2019), are generally 

characterized by low mortality and high contribution 

to restoration (Barbosa et al. 2021, Oliveira et al. 

2022). Photosynthetic efficiency and nutrient use 

may be the main reasons for the successful 

establishment of these species (Santos Junior et al. 

2006). Combined with revegetation, fertilization and 

remediation of soil acidity are the most common and 

widely used alternatives (Fig. 6C). Generally, after 

the application of nitrogen fertilizers (Martins et al. 

2018) and dolomitic limestone (Oliveira et al. 2022), 

there are short-term and positive responses to tree 

seedling development, mainly due to reduced 

aluminum and increased availability of calcium and 

magnesium. On the other hand, it is costly and often 

not feasible strategy (Nunes et al. 2020), which may 

be replaced by organic fertilization methods that also 

supply the absence of these nutrients in the soil and 

are low cost and easy to acquire. 

Used for decades, natural regeneration is a 

simple and generally efficient alternative that 

depends on the degree of degradation and propagules 

sources available (Poorter et al. 2016, Chazdon and 

Uriarte 2016), mainly due to the resilience of the 

Amazon ecosystems (Andrade et al. 2020). The 
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technique consists of progressively recovering 

ecosystem functions, especially the nutrient cycle, 

without human interference (Chazdon and Uriarte 

2016). A case study in the Amazon showed the 

return of edaphic attributes after 7 years of 

regeneration (Brasil Neto et al. 2021). However, in 

cases where propagules sources are exhausted, the 

method of spreading piles of organic waste called 

nucleation (Fig. 6D) intensifies the action of 

microorganisms and, consequently, the formation of 

organic matter in the soil, raising the pH (Barbosa et 

al. 2022). 

 

 

Figure 6. Strategies used in the Amazon to minimize the impacts of soil nutritional limitations and promote the 

restoration of degraded ecosystems (A). Where B = seedling planting; C = soil preparation with fertilizers (Oliveira 

et al., 2022); D = nucleation (Barbosa et al., 2022); E = soil cover with organic waste (Ribeiro et al., 2022); F = 

biostimulants application; G = biochar use. Source: Authors. 

 

For shifting cultivation, researchers from the 

Brazilian Agricultural Research Corporation 

(Embrapa) have developed a “Chop-and-mulch” 

system, aiming to replace the use of fire by the 

shredding of vegetation of a secondary forest called 

"capoeira" with the aid of an adapted tractor 

(Embrapa, 2017). Another alternative to increase the 

sustainability and self-maintenance of this type of 

cultivation is the agroforestry systems (Suárez et al. 

2021). Organic fertilization with sawdust (Fig. 6E) 

reduced soil acidity and increased the availability of 

nutrients in an area degraded by kaolin mining in the 

Eastern Amazon (Ribeiro et al. 2021), and can also 

be used for shifting cultivation. 

In general, biofertilizers and biostimulants 

are increasingly required in both national and 

international scenarios (Kumar and Pandey 2020, 

Silva, Nascente, et al. 2020, Ligowe et al. 2020, Zin 

and Badaluddin 2020). Biofortification is an 

approach widely used in agricultural crops to reduce 
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nutrient deficiencies in rural communities (Ligowe 

et al. 2020) but lately, it has been used to reverse 

nutrient deficiencies in soils, optimizing the growth 

of tree species (Younas et al. 2022). For instance, 

biofortification with selenium, which is an essential 

nutrient for the production of cell membrane 

protective enzymes, stimulates antioxidant activity, 

fighting ROS and minimizing the impacts of 

nutritional stress (Lanza and Reis 2021; Silva et al. 

2020).  

In other ways, inoculation of growth-

promoting microorganisms such as Arbuscular 

Mycorrhizal Fungi (AMF) and nitrogen-fixing 

bacteria are effective biostimulants in plant growth 

(Vieira et al. 2017). Fungi of the genus Trichoderma 

sp. (Fig. 6F), for example, are phytopathogenic 

controllers and decomposition attenuators, 

increasing the availability of macro and 

micronutrients (López-Bucio et al. 2015). In the 

Brazilian Atlantic Forest biome, the fungus 

increased the survival rates and height of tree 

seedlings such as Cedrela fissilis Vell. (Cedro rosa), 

ensuring successful restoration (Griebeler et al. 

2021). Added to this, inoculation of the fungus 

causes the root system to expand, allowing for 

increased absorption of nutrients (Zin and 

Badaluddin 2020).  

Another strategy is the use of biochar (Fig. 

6G), a natural, inexpensive, and effective 

remediation solution for contaminated soil (Lefebvre 

et al. 2019, Neogi et al. 2022), used to recover 

degraded areas in the Amazon, reusing açaí seeds 

(Ramos et al. 2021). In other biomes, biochar from 

Eucalyptus sp. promoted an increase in soil pH and 

a reduction in the availability of heavy metals such 

as cadmium, lead, and zinc (Penido et al. 2019). 

 

Conclusions 

Our research has demonstrated the impacts of 

nutritional limitations on the development of tree 

species and the efforts of the scientific community to 

minimize damage to restoration. Nutrient 

deficiencies in cell structures are closely linked to 

the reduction of plant structural variables, such as 

height and diameter. Damage to enzymatic activity 

and stomatal regulation was also observed. In 

contrast, oxidative stress can lead to phytotoxicity 

because of the formation of reactive oxygen species. 

Despite this, we noted in our review a limitation of 

scientific information related to the theme, 

particularly for forest species in the Amazon. In this 

way, we recommend the promotion of research for 

the biome, aiming to reduce existing gaps and 

maximize the potential of forest restoration. 
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