
603 
Advances in Forestry Science 
Original Article 

 
ISSN: 2357-8181 

DOI: http://dx.doi.org/10.34062/afs.v6i2.7086                                                                         Adv. For. Sci., Cuiabá, v.6, n.2, p.603-610, 2019 

 

Biomass quantification of Pinus taeda L. from remote optical sensor data 
 
Carla Talita Pertille¹   Marcos Felipe Nicoletti¹   Larissa Regina Topanotti¹   Thiago Floriani Stepka¹  

 
¹ University of Santa Catarina, Agroveterinary Science Center, Av. Luiz de Camões, 2090 - Conta Dinheiro, Lages - SC, 88520-000 
 

*Author for correspondence: carlatpertille@gmail.com 

 Received: August 2018 / Accepted: March 2019 / Published: June 2019 

 

Abstract 

This research aimed to estimate the biomass trunk of a 

Pinus taeda L. stand from vegetation indices from 

Landsat-8/OLI and Sentinel-2/MSI optical remote sensors. 
In order to obtain the biomass, a forest inventory was 

carried out with the installation of 33 circular plots of 400 

m², in which all the individuals had the diameter at breast 

height (cm) and the total height (m) measured. Then, 30 

trees were scaled by the Smalian method. The individual 
tree volume was estimated by the Meyer regression 

volumetric equation, which showed the best performance 

for the analyzed data set. The biomass was obtained 

through the product of the individual tree volume by the 

wood basic density. Subsequently, aerial biomass was 
obtained per plot. The processed orbital images were 

gathered from the Landsat-8/OLI and Sentinel-2/MSI 

sensors. We derived 19 vegetation indices for both images , 

which were correlated with the biomass per plot. The 

indexes with the best correlation with the biomass were 
considered as regression variables to develop models by 

the Stepwise technique (Backward and Forward). The 

correlation was significant among the variables and the 

best model was derived from the Landsat-8 data, which 

estimated the biomass per plot with an error of 8.75% and 
an adjusted coefficient of determination of 0.8173. 

Nevertheless, the statistical analysis revealed that there 

was no significant difference between the biomass 

estimated by the inventory and by the remotely located 

data. 
Keywords: Remote Sensing, Vegetation Index, 

modelling. 

 

Introduction 

The species Pinus taeda L. is native to the South and 
Southeast of the United States of America, but in Brazil it 

was introduced in the 1930´s (Shimizu, 2008). Factors 

such as fast growth and the wood quality enabled the 

expansion of the forest plantations of this species in the 

1960´s in the Southern of Brazil (Kronka et al., 2005). 
According to the Instituto Brasileiro de Árvores (Ibá, 

2017), the State of Santa Catarina presented 545,835 

hectares of Pinus spp. forests in 2016, corresponding to 

34% of the plantations of this genus in Brazil. 

The plant biomass quantification is one of the main 
factors used to investigate the conditions of a natural or 

implanted forest (Hentz et al., 2014). Martinelli et al. 

(1994), define biomass as an amount expressed in mass of 

available plant material in a forest. For Sanquetta et al.  

(2002), biomass is defined as a mass of living or dead plant 
biological matter existing in a forest or even only in the 

tree fraction. It is common to use the term phytomass to 

refer to plant biomass. Still, Odum (1986) designates  

biomass as the organic mass produced by area unit, and it 

can be expressed in dry matter weight, wet matter weight  
and carbon weight.  

The importance of biomass estimation for an analysis 

of the yield of forest ecosystems was highlighted by Gunlu 

et al. (2014). There are many methods for predicting 
biomass, such as field measurements and remote sensing 

(SR).The first method is also known as destructive and 

requires the realization of forest inventories. It can be 

mentioned the techniques of stratified clip, mean tree and 

plot (Silveira et al., 2008; Kershaw Júnior et al., 2016). 
However, in large areas, this activity is difficult to 

implement, time and resources demanding and possibly 

unfeasible in tropical forests due to their structure 

complexity (Gunawardena et al., 2015). 

Therefore, SR techniques have been applied to gather 
forest data, such as biomass, with reasonable costs and 

acceptable accuracy, which boosted their utilization for 

such purposes in the last years. The main approach to 

biomass estimation though satellite images consists of 

association data from vegetation indexes (VI) with field 
measurements for the construction of predictive models or 

allometric equations (Lu et al., 2012). 

The vegetation indexes are obtained from the 

measured reflectances and represent an integrative 

measure of the vegetation photosynthesis activity  and 
canopy structure variation (Huete et al., 2002). In the other 

hand, allometric equations use Diameter at Breast Height  

(DBH), height and biomass as independent variables  

(Vashun & Jayakumar, 2012). Kim et al. (2011) state that 

these equations are site-specific and Montagu et al. (2005) 
indicate forest age, site and stand´s density as factors that 

influence the performance of such models).  

The forest biomass prediction from remote optical 

sensor images using IVs has already been evaluated in 

several studies, including the following: Yan et al. (2013): 
China, without species; Wang et al. (2016): estimate wheat 

biomass using Random Forest in 5 states of China; 

Valbuena et al. (2017): biomass estimate for Pinus 

sylvestris in Spain; Dalponte et al. (2018): biomass 

estimate of Pinus (Picea abies (L.) H. Karst) and Pinus 
sylvestris) and deciduous species in Italy.  

Thus, the objective of this research was to estimate the 

trunk biomass of a Pinus taeda L. forest stand from 

vegetation indices from Landsat-8/OLI and Sentinel-

2/MSI. 
 

 

 

Material and methods 

Description of the area 
The research was developed in a Pinus taeda L. forest 

stand located in the municipality of Painel, with 

coordinates UTM 592647.36 m E and 6908465.26 m S in 

the mountainous region of Santa Catarina (Figure 1). The 

area has an average altitude of 1144 m.a.s.l. and the 
climate is classified as Cfb by Koppen, with temperate and 

mild summer. The average annual temperature is 15.3ºC. 
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The average annual rainfall is 1543 mm (Alvares et al.,  
2013). 

 
Figure 1 - Location of the study area: A) Brazil, B) Santa 

Catarina and C) Pinus taeda L. 

 

Obtaining biomass 
The biomass was obtained by the volumetric method, 

through forest inventory. For its execution, we used the 

random sampling process with fixed area method. The 

simple random sampling process was used because the 

area was relatively small, homogeneous and professional 
preference. A number of 33 circular plots of 11.28 meters 

radius with 400 m² were allocated. In all plots, the diameter 

at the chest height (DBH) of all tree individuals was 

measured with the following measures: 0.07m, 0.7m, 

1.30m, 3.3m, 5.3m and every two meters up to the end of 
the tree. The height of approximately 10% of the plot ś 

trees and dominant trees was measured using a Vertex 

hypsometer. The central coordinate of the plot was 

obtained with a GPS (Global Positioning System) model 

Garmin Etrex ®. 
We selected 30 trees that were scaled by the Smalian 

method covering the stand diametric distribution. For this, 

the diameters along the trunk were measured in the 

sections: 0.02 m; 0.7 m; 1.3 m and 2 m, and from that 

point, they were measured each two meters up to the total 
height of each tree. Different volumetric regression models  

were fitted, but the Meyer volumetric model (Equation 1) 

was the one with best fitting statistics and it was therefore 

used to estimate individual tree volume.  

v = -0,2467+ 0,0404*DBH+ -0,0014*DBH³+ 0,0009* 

DBH*HT+0,00009*DBH²*HT                       (1) 
Note: v: estimated individual volume (m³); DBH: diameter 

at breast height (cm); H: total height (m): β
n
: model´s  

coefficients. 

The individual biomass quantification of the trees was 

done using the volumetric technique, which comprises the 

product of the individual tree volume and the wood basic 

density (Equation 2): 

𝑏𝑣𝑖  = 𝑣𝑖 *𝑑𝑏𝑖                           (2) 
Note: bvi: trunk biomass (kg); vi: individual tree volume 

obtained by scale (m³); dbi: basic density of the trunk of 

Pinus taeda L. (367.54 Kg m-³), based on Andrade (2006).  

 

With the trees individual biomass, biomass was 
quantified per plot (Kg 0.04ha-1) and with these data, 

regression models were constructed. 

 

Spectral data 
 SR techniques included the use of the Landsat-8 

satellites, with the OLI (Operational Land Imager) and 

Sentinel-2 sensor with the MSI (Multispectral Instrument) 

sensor. The characteristics of the sensors are described on 

Table 1. 
 
Table 1 – Characteristics of Landsat-8 / OLI and Sentinel-2 / 
MSI sensor bands. 

 Landsat-8/OLI 

Spectral bands Center of  λ (µm) Spatial resolution 

(m) 
Blue 480 30 

green 560   30 

red 655 30 
near infrared 865 30 

SWIR 1 1610 30 

SWIR 2 2220 30 

PAN 590  15 
 Radiometric 

resolution 

Dimensions   

Projection 

16 bits 

170 x 185 Km 

UTM, Datum WGS 1984 

 Sentinel-2 

Coastal aerosol 443 60 

blue 490 10 

green 560 10 

red 665 10 
Red-edge 1 705 20 

Red-edge 2 740 20 

Red-edge 3 783 20 

NIR 842 10 
Red-edge 4 865 20 

water vapour 945 60 

cirrus 1375 60 
SWIR 1 1610 20 

SWIR 2 2190 20 

Radiometric 

resolution 

12 bits 

100 x 100 Km 
UTM, Datum WGS 1984 Dimensions   

Projection 

Note: λ: wavelength (µm); UTM: Universal Transversa de Mercator; 
WGS: W orld Geodetic System  1984. Source: USGS (2013) and ESA 

(2010). 

 

Next, the images availability of the respective 
satellites (Table 1 and 2) was evaluated in dates close to 

the field campaigns to obtain the forest biomass. Another 

requirement for image acquisition was the absence or low 

cloud cover. 

The Landsat-8/OLI satellite image was acquired from 
the United States Geological Survey platform dated April 

22nd, 2018. The acquisition of the Sentinel-2/MSI image 

was performed on the Copernicus Open Access Hub for 

the same date. Both images were acquired with orbit 221 

and point 79. 
The digital image processing was performed in the 

ENVI (Environment for Visualizing Images) 

computational application, in which the atmospheric 

correction was performed using the FLAASH algorithm 

(Fast Line-of-sight Atmospheric Analysis of Hypercubes). 
After the images processing, the following vegetation 

indexes were calculated (Table 2):  

 
Table 2 - Vegetation Indices calculated for the orbital images 
referring to the Pinus taeda L stand. 

VI Formula Referenc

e 

   

ARVI NIR-2(RED-BLUE)

NIR+2(RED-BLUE)
 

Kaufman
n and 

Tanré 

(1992) 

CRI 1

ρGREEN
+

1

ρNIR
 

Gitelson 
et al. 

(2002) 



605 

Pertille et al 

 

Adv. For. Sci., Cuiabá, v.6, n.2, p.603-610, 2019 

DVI γ ρNIR − ρRED Richards

on and 

Wegand 
(1977) 

EVI 
2,5*

(ρNIR-ρRED)

ρNIR+(6*ρRED-7,5*ρBLUE)+ 1 
 

Huete et 

al. 

(1997) 
EVI2 

2,5*
(ρNIR-ρRED)

(ρNIR+2,4* ρRED+ 1) 
 

Jiang et 

al. 

(2008) 

GNDV
I 

ρNIR-ρGREEN

ρNIR+ρGREEN
 

Gitelson 
et al. 

(1996) 

MSAV

I 

ρNIR − ρRED

ρNIR + ρRED + L 
 (1 + L) 

Qi et al. 

(1994) 

MSAV
I2 

2ρNIR + 1 −  √2 (ρNIR + 1)2 − 8(ρNIR − ρRED)

2
 

Qi et al. 
(1994) 

MSR (ρNIR/ρRED) − 1 

√ρNIR/ρRED + 1
 

Chen 

(1996) 

MTVI2 1.5 * (1.2 * (ρNIR-ρGREEN)-2.5*(ρRED-ρGREEN)) 

√2 * (ρNIR +1)²-6*ρNIR+5* √ρRED- 0.5

 
Habouda

ne et al. 
(2004) 

MVI ρNIR-ρSWIR

ρNIR+ρSWIR
 

Gao et 

al. 

(1996) 
NDVI ρNIR − ρRED

ρNIR + ρRED
 

Rouse et 

al. 

(1974) 
OSAV

I 

ρNIR − ρRED

(ρNIR + ρRED + 1 ,6) ∗ 1,16
 

Rondeau

x et al. 

(1996) 

PSRI ρRED - ρBLUE

ρNIR 
 

Merzyak 
et al. 

(1999) 

RDVI ρNIR − ρRED 

√ρNIR + ρRED 
 

Wang et 

al. 
(1998) 

SAVI (1 + L)(ρNIR − ρRED)

ρNIR +  ρRED + L
 

Huete 

(1988) 

SIPI ρNIR - ρBLUE

ρNIR + ρBLUE
 

Penuelas 
et al. 

(1995) 

SR ρNIR

ρRED
 

Jordan 

(1969) 

TVI √NDVI+0,5 Broge 
and 

Leblanc 

(2000) 

Note: VI: vegetation index; ρBLUE: Blue band reflectance; ρGREEN: 

Green band reflectance; ρRED: Reflectance of red band; ρNIR: Reflectance 

of the near Infrared band; ρSWIR: Reflectivity of the short -wave infrared 

band; L: constant that minimizes the effects of the soil ; in this study, we 
used the value of 0.50; γ  = slope of the soil line; ARVI: Atmospherically 

Resistant Vegetation Index; CRI: Carotenoid Reflectance Index; DVI: 

Difference Vegetation Index; EVI: Enhanced Vegetation Index; EVI2: 
Enhanced Vegetation Index 2; GNDVI: Green Normalized Difference  

Vegetation Index; MSAVI: Modified Soil Adjusted Vegetation Index; 

MSAVI2: Modified Soil Adjusted Vegetation Index 2; MSR: Modified 

Simple Ratio Index; MTVI2: Modified Triangular Vegetation Index 2; 
MVI: Moisture Vegetation Index; NDVI: Normalized Difference  

Vegetation Index; OSAVI: Optimized Soil Adjusted Vegetation Index; 

SAVI: Soil Adjusted Vegetation Index; PSRI: P lant Senescence 

Reflectance Index; RDVI: Re-normalized Difference Vegetation Index; 
SAVI: Soil Adjusted Vegetation Index; SIPI: Structure Insensitive Pigment 

Index; SR: Simple Ratio Vegetation Index; TVI: Transformational  

Vegetation Index.  

 
With the central point of each plot, it was possible to 

georeference them in the images used, in a GIS 

environment (Esri, 2018) and using the buffer tool, an area 

of radius equal to the plot radius (11.28 meters) was 

constructed, obtaining the area of each plot in the images . 
The mean value per plot was also obtained in a GIS 

environment using the Zonal Statistics as a Table tool, 

which obtained the mean values of each pixel and, finally, 

the average value per plot. 

The correlation among the average vegetation indices  
per plot derived from the two sensors with the biomass per 

plot was made by the Pearson correlation. The three 

indexes that correlated most with biomass were the 

regression variables used to develop the regression models  
by Stepwise technique (Forward and Forward) in order to 

estimate biomass per plot (kg 0.04ha-1). In addition to the 

models constructed with the indexes, we tested models  

available in the literature, which are described on Table 3. 

Model names range from 1 to 5 for each sensor. 
 
Table 3 – Fitted models for biomass estimation per plot (kg 
0.04ha

-1
) using vegetation indices from the Landsat-8/OLI and 

Sentinel-2/MSI sensors. 
 Model             Equation Referenc

e 

 Landsat-8  

1 B  = β
0
+ β

1
* IV+ β

2

∗ IV2 +  β
3

∗ IV3

+ β
4

 IV2 + β
5

∗ IV3 +  β
6

∗ IV4 + β
7

∗ IV5 +  β
8

∗  IV22 + β
9

∗ IV23

+   β
10

∗ IV24 +  β
11

∗ IV25 +  β
12

∗ IV32

+  β
13 

∗ IV33 +   β
14 

∗  IV34 +   β
15 

IV35

+  β
16 

ln IV

+   β
\17 

ln IV2 +  β
18

∗ ln IV3     

Stepwise 

1 

2 B  = β
0
+ β

1
* IV+ β

2
∗ IV2 +  β

3
∗ IV2 +

 β
4

∗ IV3 +  β
5

∗ IV22 +

 β
6

∗ IV23 +  β
7

∗ IV24 +

 β
8

∗ IV25 +  β
9

∗

ln IV2 +  β
10

∗

EXP IV25 +  β
11

∗ 1 /IV²   

+  β
12

∗ 1/IV³+ β
13

∗

1/IV4 +  β
14

∗ 1/IV5 +

 β
15

∗ 1/IV2² +  β
16

∗

1/IV25 +  β
17

∗ IV ∗

IV2 +  β
18

∗ 1/IV3² ∗

1/IV² +  β
19

∗ 1/IV4 ∗

1/IV²  

Stepwise 

2  

3 B = β
0
+ β

1
* IV³ + β

2
* IV4  + β

3
* IV5 +  

β
4
* ln IV + β

5
∗ ln IV4 +

 β
6

∗ ln IV5 +  β
7

∗

EXP IV + β
8

∗ EXP IV2 +

 β
9

∗ EXP IV3 + β
10

∗

EXP IV4 +   β
14

∗ √IV +

 β
15

∗ √IV3 +  β
16

∗ √IV5  

+ β
17

∗ 1/IV +  β
18

∗

1/IV² +  β
19

∗ 1/IV25  

Stepwise 

3 

4 B = β
0
+ β

1
* IV + β

2
* IV² + β

3
* IV³ +  

β
4
* ln 𝐼𝑉4  +  β

5
∗

EXP IV2 +  β
6

∗

 EXP IV3 + β
7

∗

 EXP IV4 +  β
8

∗

 EXP IV5 +  β
9

∗ 1 /IV³  + 

β
10

∗ 1/IV4  

Stepwise 

4  

Sentinel-2 

1 B  = β
0
+ β

1
* IV+ β

2
∗ IV2 +  β

3
∗ IV² +

 β
4

∗ IV4 +  β
5

∗ I V5 +

 β
6

∗  IV22 +  β
7

∗ IV24 +

 β
8

∗ IV25 +  β
9

∗ ln IV +

  β
10 

∗ ln IV2 +   β
11 

∗
1

IV
+  β

12 
∗ 1 /IV²   +  β

13
∗

1/IV³ + β
14

∗ 1/IV4 +

+ β
15

∗ 1/IV5 +  β
16

∗

1/IV2² +  β
17

∗ 1/

IV2³ + β
18

∗ 1/IV24 +

 β
19

∗ 1/IV5  

Stepwise 
1 

2 B  = β
0
+ β

1
* IV+ β

2
 IV2 + β

3
∗ IV3 +

  β
4

∗ IV4 +  β
5

∗ IV5+ 

β
6

∗  EXP IV + β
7

∗ 1 /IV 

Stepwise 

2  

3 B  = β
0
+ β

1
* IV+ β

2
 IV3 + β

3
∗ IV5 +

  β
4

∗ EXP IV +  β
5

∗

EXP IV3+ β
6

∗

 EXP IV5 +  β
7

∗ 1 /IV +  

Stepwise 

3 
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β
8

∗ 1/IV² +  β
9

∗ 1/IV³ 

+ β
10

∗ 1/IV4 +  β
11

∗

1/IV5  

4 B  = β
0
+ β

1
* IV+ β

2
ln IV² + β

3
∗

ln IV5 +   β
4

∗ EXP IV +

 β
5

∗ EXP IV2 + β
6

∗

 EXP IV3 +  β
7

∗

EXP IV4 + β
8

∗

 EXP IV5 +  β
9

∗ 1 /IV³  + 

β
10

∗ 1/IV4  

Stepwise 
4  

Note: B: biomass by plot (Kg 0.04ha-1); βi: parameters to be estimated; IV: 

Vegetation index; IV2: Vegetation index 2 ; IV3: Vegetation index 3; ln: 

natural logarithm based on the constant e (2,71828182845904); EXP: 
natural exponential function. 

  

The criteria for choosing the best model were the 

following: higher adjusted coefficient of determination (R² 
adjusted) (Equation 3), lower standard error values of the 

estimate (Syx%) (Equation 4 and 5), Akaike Information 

Criterion (AIC) (Equation 6), Bayesian Information 

Criterion (BIC) (Equation 7) and Root Mean Squared 

Error (RMSE) (Equation 8). The statistical factor pointed 
out by Schneider et al. (2009), test F with the level of 

significance of 5% of probability, was also considered. 

R
2
aj =1- { (1-R

2)* (
n-1

n-p
)}                                             (3) 

Syx = √
∑ (y-yi)²

n-p
                                                          (4) 

Syx= 
Syx

Ŷ
*100                                                              (5) 

AIC = n * ln (SQres) - n * ln (n) + 2p                           (6) 

BIC = -2 log  (Lp)  +  [(p+1)+1] log (n)                       (7) 

RMSE = 

√
∑(y - yi)²

n
                                                                    (8) 

 RMSE =  
RMSE

Ŷ
*100                                                                   (9) 

Note: R² aj: adjusted coefficient of determination; number of 
observations; p: number of parameters of the equation; Syx: 
standard error of estimate (Kg 0.04ha

-1
); y: biomass observed 

(Kg 0.04ha
-1

); yi: estimated biomass (Kg 0.04ha
-1
); Syx 

(%):standard error of the estimate in percentage (%); Ŷ: mean of 
observed values (Kg 0.04ha

-1
); p: number of model parameters; 

SQres: Sum of Squares of the residues obtained by ANOVA; Lp: 

maximum likelihood function of the model; RMSE: Root Mean 
Square Error (kg 0.04 ha

-1
). 

 

Statistical analyses including the models fitting and 

their evaluation through the criteria mentioned above, the 
vegetation indexes and Pearson correlation, were 

performed in software R version 3.4.1. (R Core Team, 

2018).  

 

Results and Discussion 
 The calculated tree biomass values ranged from 

1,959.225 (t ha-1) to 4,520.747 (t ha-1), with an average of 

3,000.215 (t ha-1). The diameter at breast height and the 

total height per plot had a smaller variation, as shown in 

Figure 2: 

 
A)                                                                        

B) 

 
      C) 

Figure 2 - Descriptive statistics of variables (A): diameter at 

breast height per plot (cm), (B) total height per plot (m) and (C) 
biomass (kg 0.04 ha

-1
) Pinus taeda L. in Panel-SC.  

 

 The correlation between vegetation indices and 

biomass per plot (Table 4) revealed that the highest  

correlation for the indices from Landsat-8/OLI and 
Sentinel-2/MSI was observed in the CRI index, with 

0.1937 and 0.1726, respectively. 

 
Table 4 - Correlation matrix of vegetation indices derived from 
the sensors (Landsat-8/OLI and Sentinel-2/MSI) with biomass per 
plot (kg 0.04ha

-1
) for a Pinus taeda L. stand in Panel – SC. 

 Biomass 

VI Landsat-8 Sentinel-2 
ARVI -0.0402 -0.2027 

CRI 0.1937* 0.1726* 

DVI 0.1936* -0.1272 

EVI 0.1937* -0.1322 
EVI2 -0.0176 -0.1306 

GNDVI 0.0210 -0.0976* 

MSAVI -0.0144 -0.1323 
MSAVI2 0.1936 -0.1174 

MSR -0.0132 -0.1846 

MTVI2 -0.0395 -0.1599 

MVI 0.1053 -0.0566* 
NDVI -0.0022 -0.2182 

SAVI -0.0292 -0.1288 

PSRI -0.1307 -0.1111 

RDVI -0.0355 -0.1677 
SAVI -0.0144 -0.1323 

SIPI -0.0703 -0.1765 

SR -0.0199 -0.1672 

Note: VI: Vegetation index. * Significant correlation at 5% 
probability. 

 

The models were developed with the 3 IVs most 
correlated with the biomass. For the data derived from 

Landsat-8 the IVs were CRI, DVI and MVI. For Sentinel-

2, the IVs were CRI, GNDVI and MVI. 
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The low correlation values among the indices and the 
biomass per plot can be explained by the limitations 

caused by the spectral responses connected to the interface 

and the sun radiance with the closure of the forest canopy. 

This may result in a low relation between the values of the 

vegetation index and the estimated biomass (Sarker & 
Nichol, 2011). 

In addition, the spatial resolution of the images (10m 

and 30m) also interfered in the results obtained, due to the 

spectral mixture caused by the existing forest cover. 

Stand´s characteristics such as age, number of trees, 
understory vegetation and soil brightness were also 

important, as well as the area topographic characteristics. 

In other studies, other indices showed a higher 

correlation with the biomass variable. The SAVI index 

presented a correlation of -0.77 in the study conducted by 
Watzlawick et al. (2009), which used IKONOS-II sensor 

images to estimate biomass and organic carbon rates in a 

Mixed Ombrophilous Forest. Das and Singh (2012) 

investigated the best vegetation index correlated with 

biomass and the Ratio Vegetation Index (RVI) was higher 
than the other indexes tested by them. 

The regression models fitting used for estimating 

biomass per plot from the best correlated vegetation 

indexes (Table 5) showed that these models showed 

adjusted R² of 0.3312 to 0.8173 and an error between 
8.75% and 16.91%. The high RMSE error can be 

explained by the low correlation, spatial resolution of the 

images (10m and 30m) and by the characteristics of the 

population (age, density, canopy closure) that interfered 

with the reflectance values and the IVs used. 
 
Table 5 - Fitting statistics of the models tested for the biomass 
estimation per plot (kg 0.04ha

-1
) using vegetation indexes for a 

stand of Pinus taeda L. in Panel - SC. 

Landsat-8 

Mo
del 

R² 
aj 

Sy
x 

Sy
x 

(%
) 

F AI
C 

BI
C 

RM
SE 

RM
SE 
(%) 

1 0.53
34 

62
2.5 

13.
91 

2.
1 

37
5.6 

40
8.3 

122.
0 

2.7 

2 0.31
75 

75
3.0 

16.
95 

1.
6 

42
2.1 

44
8.5 

361.
7 

8.1 

3 0.81
73 

38
9.5 

8.7
0 

7.
5 

39
1.3 

41
5.2 

216.
0 

4.8 

4 0.33
12 

74
5.3 

16.
73 

2.
1 

42
7.6 

44
3.9 

546.
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Note: R² aj: R² adjusted; Syx: standard error of estimate (kg 
0.04ha

-1
); Syx (%): standard error of the estimate in percentage; 

F: F test at 95% probability; AIC: Akaike Information Criteria; 
BIC: Bayesian Information Criterion; RMSE: Root Mean Square 
Error (kg 0.04ha

-1
). 

 
 

 The graphical distribution of the best fitted residuals  

for each sensor is illustrated in Figure 3:  

 
A)                                                                         

B) 
Figure 3 – Graphical distribution of the residuals for volumetric 
models adjusted for biomass estimation per plot (kg 0.04ha

-1
) with 

vegetation indices of Landsat-8/OLI (A) and Sentinel-2/MSI (B). 

 

The best fitted model was the model developed with 

Landsat-8/OLI indices, with a higher adjusted R² (0.8173) 
and lower standard error of the estimate (8.75%). For the 

Sentinel-2/MSI data, the best fitted model was model 3 

with adjusted R² of 0.6362 and standard error of the 

estimate of 12.34%. The superiority of the models  

developed from Landsat-8 data can also be visualized in 
the concentration of the residues around the regression line 

(Figure 3A), while for the Sentinel-2 (3B) data model, it 

resulted in outliers.  

The estimates of biomass per plot may be affected by 

the factors highlighted by Somogyi et al. (2006), such as 
precipitation, temperature, latitude, altitude, stand age and 

thinning. In addition, this variable is an indicator of a site 

productivity (kg m-2 year-1) and does not vary with the 

vegetation stage of succession. The referenced authors also 

state that several factors should be used in biomass 
estimates, depending on the available data (trees or plots) 

and the desired estimate. 

Several studies aiming to estimate biomass of a forest 

stand by optical data have already been developed. The 

constellation of Landsat sensors has been used in many 
researches, such as those described below. 

The biomass quantification of the last 30 years of a 

stand located in northwest China using images from the 

Landsat TM/ETM sensor was investigated by Yan et al.  

(2013). The results showed that the MSAVI and SAVI 
indices had a strong correlation with the biomass while the 

NDVI had a low correlation. With the MSAVI, the 

regression model tested had adjusted R² of 0.612 and the 

models with the SAVI and NDVI index had adjusted R² of 

0.604. 
The estimate of the biomass of an unequal population 

from Remote Sensing data using Artificial Neural 

Networks (RNA) was analyzed by Ferraz et al. (2014). The 
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vegetation indexes showed that the aerial biomass stocks 
were very close to those found from the use of four 

IKONOS sensor bands. 

The evaluation of the relationship among the band 

reflection values and the indices of a Landsat-5/TM 

satellite image and biomass obtained from soil 
measurements using multiple regression analysis for a 

Pinus spp. in the north-west of Turkey was made by Gunlu 

et al. (2014). The vegetation indices were higher in the 

biomass estimates than the spectral reflectivity values of 

the individual band. The authors emphasized that factors 
such as study objectives, geographical location, structure 

of forest areas and scale problems were decisive in the 

index performance. The models developed from Landsat-

5/TM satellite data may be beneficial for modeling 

biomass in coniferous forest areas that have similar forest 
ecosystems as the study area of their research. 

The Landsat-8/OLI and ALOS-PALSAR-2 sensors 

were used by Gunawardena et al. (2015) for the biomass 

prediction in Horton Plains National Park, Sri Lanka. A 

positive linear correlation was observed between biomass 
and NDVI. This index was the most adequate to estimate 

biomass in areas of moderate or dense vegetation. For 

ALOS-PALSAR 2 a positive linear correlation was also 

found between backscattering coefficient and biomass 

even though this relationship was not strong. 
The biomass mapping in Landsat-8/OLI images was 

elaborated by Karlson et al. (2015). With the Random 

Forest (RF) algorithm, the authors also selected the 

regression variables to estimate biomass in the study area. 

The model with the highest predictive power included four 
predictors; the homogeneity texture calculated using the 

window size of 3 x 3 pixels, the panchromatic band, the 

median of the dry season NDVI and the humidity. This 

model had an RMSE of 21.5 tons per hectare. 

Sentinel-2/MSI was explored by Sibanda et al. (2015), 
together with Landsat-8/OLI for the quantification of 

aboveground grass biomass in different fertilizer 

treatments. The results showed that the best combination 

of Sentinel-2 bands for the estimation of the variable in 

question was the red and red-edge bands. The authors also 
highlighted the potential of these multispectral sensors in 

the efficient estimates of aboveground biomass for pasture 

management purposes. 

The investigation of the applicability of the Random 

Regression (RF) regression algorithm in combination with 
vegetation indices to remotely estimate wheat biomass was 

performed by Wang et al. (2016). The authors compared 

the performance of the model generated by RF with 

models developed by Artificial Neural Networks (RNA) 

and Support Vector Machines (SVM). The accuracy of the 
estimates acquired by RF was higher than the other 

algorithms tested, with R² of 0.533, 0.721 and 0.79, 

respectively, and the corresponding RMSE values were 

477, 1126.2 and 1808.2 kg ha-1. 

The adequacy of commonly used statistical measures 
to evaluate the accuracy of biomass predictions from SR 

was evaluated by Valbuena et al. (2017). The authors 

concluded that statistical measures of accuracy, precision 

and agreement are necessary but insufficient for the 

model´s evaluation, and they advocate the evaluation 
measures incorporation specifically dedicated to the test of 

observed versus predicted performance and to the 

evaluation of the over-adjustment degree. 

The evaluation of models for pre-selection of biomass 

on the ground and its combination with airborne data for 
DBH and biomass statistics at the level of activator data 

fragments detected remotely by a laser airborne scanner 
(ALS) and hyperspectral data was performed by Dalponte 

et al. (2018). The comparison among models developed in 

field data versus models developed from remote sensing 

data revealed that both can be used in predicting the 

variables; however, there was a large systematic error. 
Because of this, the authors suggest caution in the use of 

these models. 

 

Conclusion  
For the data set evaluated in this research, the model 

that estimated the biomass per plot (kg 0.04ha-1) with 

greater precision was the model developed with the CRI, 
DVI and MVI vegetation indexes derived from the 

Landsat-8/OLI sensor data, which resulted in an adjusted 

coefficient of determination of 0.8134 and a standard error 

of estimate of 8.75%. 

Since there was no significant difference between the 
biomass estimated by the volumetric method and the 

remotely located data (Landsat-8 and Sentinel-2), it was 

possible to estimate the trunk biomass per plot (kg 0.04ha-

1) by means of spectral data with a good level of precision.  
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